Spaces:
Running
Running
| from typing import Any, Dict, Tuple, List | |
| from functools import lru_cache | |
| from cv2.typing import Size | |
| import cv2 | |
| import numpy | |
| from facefusion.typing import Bbox, Kps, Frame, Matrix, Template, Padding | |
| TEMPLATES : Dict[Template, numpy.ndarray[Any, Any]] =\ | |
| { | |
| 'arcface_v1': numpy.array( | |
| [ | |
| [ 39.7300, 51.1380 ], | |
| [ 72.2700, 51.1380 ], | |
| [ 56.0000, 68.4930 ], | |
| [ 42.4630, 87.0100 ], | |
| [ 69.5370, 87.0100 ] | |
| ]), | |
| 'arcface_v2': numpy.array( | |
| [ | |
| [ 38.2946, 51.6963 ], | |
| [ 73.5318, 51.5014 ], | |
| [ 56.0252, 71.7366 ], | |
| [ 41.5493, 92.3655 ], | |
| [ 70.7299, 92.2041 ] | |
| ]), | |
| 'ffhq': numpy.array( | |
| [ | |
| [ 192.98138, 239.94708 ], | |
| [ 318.90277, 240.1936 ], | |
| [ 256.63416, 314.01935 ], | |
| [ 201.26117, 371.41043 ], | |
| [ 313.08905, 371.15118 ] | |
| ]) | |
| } | |
| def warp_face(temp_frame : Frame, kps : Kps, template : Template, size : Size) -> Tuple[Frame, Matrix]: | |
| normed_template = TEMPLATES.get(template) * size[1] / size[0] | |
| affine_matrix = cv2.estimateAffinePartial2D(kps, normed_template, method = cv2.LMEDS)[0] | |
| crop_frame = cv2.warpAffine(temp_frame, affine_matrix, (size[1], size[1]), borderMode = cv2.BORDER_REPLICATE) | |
| return crop_frame, affine_matrix | |
| def paste_back(temp_frame : Frame, crop_frame: Frame, affine_matrix : Matrix, face_mask_blur : float, face_mask_padding : Padding) -> Frame: | |
| inverse_matrix = cv2.invertAffineTransform(affine_matrix) | |
| temp_frame_size = temp_frame.shape[:2][::-1] | |
| mask_size = tuple(crop_frame.shape[:2]) | |
| mask_frame = create_static_mask_frame(mask_size, face_mask_blur, face_mask_padding) | |
| inverse_mask_frame = cv2.warpAffine(mask_frame, inverse_matrix, temp_frame_size).clip(0, 1) | |
| inverse_crop_frame = cv2.warpAffine(crop_frame, inverse_matrix, temp_frame_size, borderMode = cv2.BORDER_REPLICATE) | |
| paste_frame = temp_frame.copy() | |
| paste_frame[:, :, 0] = inverse_mask_frame * inverse_crop_frame[:, :, 0] + (1 - inverse_mask_frame) * temp_frame[:, :, 0] | |
| paste_frame[:, :, 1] = inverse_mask_frame * inverse_crop_frame[:, :, 1] + (1 - inverse_mask_frame) * temp_frame[:, :, 1] | |
| paste_frame[:, :, 2] = inverse_mask_frame * inverse_crop_frame[:, :, 2] + (1 - inverse_mask_frame) * temp_frame[:, :, 2] | |
| return paste_frame | |
| def create_static_mask_frame(mask_size : Size, face_mask_blur : float, face_mask_padding : Padding) -> Frame: | |
| mask_frame = numpy.ones(mask_size, numpy.float32) | |
| blur_amount = int(mask_size[0] * 0.5 * face_mask_blur) | |
| blur_area = max(blur_amount // 2, 1) | |
| mask_frame[:max(blur_area, int(mask_size[1] * face_mask_padding[0] / 100)), :] = 0 | |
| mask_frame[-max(blur_area, int(mask_size[1] * face_mask_padding[2] / 100)):, :] = 0 | |
| mask_frame[:, :max(blur_area, int(mask_size[0] * face_mask_padding[3] / 100))] = 0 | |
| mask_frame[:, -max(blur_area, int(mask_size[0] * face_mask_padding[1] / 100)):] = 0 | |
| if blur_amount > 0: | |
| mask_frame = cv2.GaussianBlur(mask_frame, (0, 0), blur_amount * 0.25) | |
| return mask_frame | |
| def create_static_anchors(feature_stride : int, anchor_total : int, stride_height : int, stride_width : int) -> numpy.ndarray[Any, Any]: | |
| y, x = numpy.mgrid[:stride_height, :stride_width][::-1] | |
| anchors = numpy.stack((y, x), axis = -1) | |
| anchors = (anchors * feature_stride).reshape((-1, 2)) | |
| anchors = numpy.stack([ anchors ] * anchor_total, axis = 1).reshape((-1, 2)) | |
| return anchors | |
| def distance_to_bbox(points : numpy.ndarray[Any, Any], distance : numpy.ndarray[Any, Any]) -> Bbox: | |
| x1 = points[:, 0] - distance[:, 0] | |
| y1 = points[:, 1] - distance[:, 1] | |
| x2 = points[:, 0] + distance[:, 2] | |
| y2 = points[:, 1] + distance[:, 3] | |
| bbox = numpy.column_stack([ x1, y1, x2, y2 ]) | |
| return bbox | |
| def distance_to_kps(points : numpy.ndarray[Any, Any], distance : numpy.ndarray[Any, Any]) -> Kps: | |
| x = points[:, 0::2] + distance[:, 0::2] | |
| y = points[:, 1::2] + distance[:, 1::2] | |
| kps = numpy.stack((x, y), axis = -1) | |
| return kps | |
| def apply_nms(bbox_list : List[Bbox], iou_threshold : float) -> List[int]: | |
| keep_indices = [] | |
| dimension_list = numpy.reshape(bbox_list, (-1, 4)) | |
| x1 = dimension_list[:, 0] | |
| y1 = dimension_list[:, 1] | |
| x2 = dimension_list[:, 2] | |
| y2 = dimension_list[:, 3] | |
| areas = (x2 - x1 + 1) * (y2 - y1 + 1) | |
| indices = numpy.arange(len(bbox_list)) | |
| while indices.size > 0: | |
| index = indices[0] | |
| remain_indices = indices[1:] | |
| keep_indices.append(index) | |
| xx1 = numpy.maximum(x1[index], x1[remain_indices]) | |
| yy1 = numpy.maximum(y1[index], y1[remain_indices]) | |
| xx2 = numpy.minimum(x2[index], x2[remain_indices]) | |
| yy2 = numpy.minimum(y2[index], y2[remain_indices]) | |
| width = numpy.maximum(0, xx2 - xx1 + 1) | |
| height = numpy.maximum(0, yy2 - yy1 + 1) | |
| iou = width * height / (areas[index] + areas[remain_indices] - width * height) | |
| indices = indices[numpy.where(iou <= iou_threshold)[0] + 1] | |
| return keep_indices | |