Spaces:
Running
Running
| from collections import namedtuple | |
| from typing import Any, Literal, Callable, List, Tuple, Dict, TypedDict | |
| import numpy | |
| Bbox = numpy.ndarray[Any, Any] | |
| Kps = numpy.ndarray[Any, Any] | |
| Score = float | |
| Embedding = numpy.ndarray[Any, Any] | |
| Face = namedtuple('Face', | |
| [ | |
| 'bbox', | |
| 'kps', | |
| 'score', | |
| 'embedding', | |
| 'normed_embedding', | |
| 'gender', | |
| 'age' | |
| ]) | |
| Frame = numpy.ndarray[Any, Any] | |
| Matrix = numpy.ndarray[Any, Any] | |
| Padding = Tuple[int, int, int, int] | |
| Update_Process = Callable[[], None] | |
| Process_Frames = Callable[[str, List[str], Update_Process], None] | |
| Template = Literal['arcface_v1', 'arcface_v2', 'ffhq'] | |
| ProcessMode = Literal['output', 'preview', 'stream'] | |
| FaceSelectorMode = Literal['reference', 'one', 'many'] | |
| FaceAnalyserOrder = Literal['left-right', 'right-left', 'top-bottom', 'bottom-top', 'small-large', 'large-small', 'best-worst', 'worst-best'] | |
| FaceAnalyserAge = Literal['child', 'teen', 'adult', 'senior'] | |
| FaceAnalyserGender = Literal['male', 'female'] | |
| FaceDetectorModel = Literal['retinaface', 'yunet'] | |
| FaceRecognizerModel = Literal['arcface_blendface', 'arcface_inswapper', 'arcface_simswap'] | |
| TempFrameFormat = Literal['jpg', 'png'] | |
| OutputVideoEncoder = Literal['libx264', 'libx265', 'libvpx-vp9', 'h264_nvenc', 'hevc_nvenc'] | |
| ModelValue = Dict[str, Any] | |
| OptionsWithModel = TypedDict('OptionsWithModel', | |
| { | |
| 'model' : ModelValue | |
| }) | |