Spaces:
Running
on
Zero
Running
on
Zero
| """ CLIP Model | |
| Adapted from https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI. | |
| """ | |
| import os | |
| from dataclasses import dataclass | |
| from typing import Optional, Tuple, Union | |
| from functools import partial | |
| import numpy as np | |
| import torch | |
| import torch.nn.functional as F | |
| from torch import nn | |
| try: | |
| from .hf_model import HFTextEncoder | |
| except: | |
| HFTextEncoder = None | |
| from .modified_resnet import ModifiedResNet | |
| # from .timm_model import TimmModel | |
| from .eva_vit_model import EVAVisionTransformer | |
| from .transformer import LayerNorm, QuickGELU, Attention, VisionTransformer, TextTransformer | |
| try: | |
| from apex.normalization import FusedLayerNorm | |
| except: | |
| FusedLayerNorm = LayerNorm | |
| print("Please 'pip install apex'") | |
| try: | |
| import xformers.ops as xops | |
| except ImportError: | |
| xops = None | |
| print("Please 'pip install xformers'") | |
| class CLIPVisionCfg: | |
| layers: Union[Tuple[int, int, int, int], int] = 12 | |
| width: int = 768 | |
| head_width: int = 64 | |
| mlp_ratio: float = 4.0 | |
| patch_size: int = 16 | |
| image_size: Union[Tuple[int, int], int] = 224 | |
| ls_init_value: Optional[float] = None # layer scale initial value | |
| patch_dropout: float = 0. # what fraction of patches to dropout during training (0 would mean disabled and no patches dropped) - 0.5 to 0.75 recommended in the paper for optimal results | |
| global_average_pool: bool = False # whether to global average pool the last embedding layer, instead of using CLS token (https://arxiv.org/abs/2205.01580) | |
| drop_path_rate: Optional[float] = None # drop path rate | |
| timm_model_name: str = None # a valid model name overrides layers, width, patch_size | |
| timm_model_pretrained: bool = False # use (imagenet) pretrained weights for named model | |
| timm_pool: str = 'avg' # feature pooling for timm model ('abs_attn', 'rot_attn', 'avg', '') | |
| timm_proj: str = 'linear' # linear projection for timm model output ('linear', 'mlp', '') | |
| timm_proj_bias: bool = False # enable bias final projection | |
| eva_model_name: str = None # a valid eva model name overrides layers, width, patch_size | |
| qkv_bias: bool = True | |
| fusedLN: bool = False | |
| xattn: bool = False | |
| postnorm: bool = False | |
| rope: bool = False | |
| pt_hw_seq_len: int = 16 # 224/14 | |
| intp_freq: bool = False | |
| naiveswiglu: bool = False | |
| subln: bool = False | |
| class CLIPTextCfg: | |
| context_length: int = 77 | |
| vocab_size: int = 49408 | |
| width: int = 512 | |
| heads: int = 8 | |
| layers: int = 12 | |
| ls_init_value: Optional[float] = None # layer scale initial value | |
| hf_model_name: str = None | |
| hf_tokenizer_name: str = None | |
| hf_model_pretrained: bool = True | |
| proj: str = 'mlp' | |
| pooler_type: str = 'mean_pooler' | |
| masked_language_modeling: bool = False | |
| fusedLN: bool = False | |
| xattn: bool = False | |
| attn_mask: bool = True | |
| def get_cast_dtype(precision: str): | |
| cast_dtype = None | |
| if precision == 'bf16': | |
| cast_dtype = torch.bfloat16 | |
| elif precision == 'fp16': | |
| cast_dtype = torch.float16 | |
| return cast_dtype | |
| def _build_vision_tower( | |
| embed_dim: int, | |
| vision_cfg: CLIPVisionCfg, | |
| quick_gelu: bool = False, | |
| cast_dtype: Optional[torch.dtype] = None | |
| ): | |
| if isinstance(vision_cfg, dict): | |
| vision_cfg = CLIPVisionCfg(**vision_cfg) | |
| # OpenAI models are pretrained w/ QuickGELU but native nn.GELU is both faster and more | |
| # memory efficient in recent PyTorch releases (>= 1.10). | |
| # NOTE: timm models always use native GELU regardless of quick_gelu flag. | |
| act_layer = QuickGELU if quick_gelu else nn.GELU | |
| if vision_cfg.eva_model_name: | |
| vision_heads = vision_cfg.width // vision_cfg.head_width | |
| norm_layer = LayerNorm | |
| visual = EVAVisionTransformer( | |
| img_size=vision_cfg.image_size, | |
| patch_size=vision_cfg.patch_size, | |
| num_classes=embed_dim, | |
| use_mean_pooling=vision_cfg.global_average_pool, #False | |
| init_values=vision_cfg.ls_init_value, | |
| patch_dropout=vision_cfg.patch_dropout, | |
| embed_dim=vision_cfg.width, | |
| depth=vision_cfg.layers, | |
| num_heads=vision_heads, | |
| mlp_ratio=vision_cfg.mlp_ratio, | |
| qkv_bias=vision_cfg.qkv_bias, | |
| drop_path_rate=vision_cfg.drop_path_rate, | |
| norm_layer= partial(FusedLayerNorm, eps=1e-6) if vision_cfg.fusedLN else partial(norm_layer, eps=1e-6), | |
| xattn=vision_cfg.xattn, | |
| rope=vision_cfg.rope, | |
| postnorm=vision_cfg.postnorm, | |
| pt_hw_seq_len= vision_cfg.pt_hw_seq_len, # 224/14 | |
| intp_freq= vision_cfg.intp_freq, | |
| naiveswiglu= vision_cfg.naiveswiglu, | |
| subln= vision_cfg.subln | |
| ) | |
| elif vision_cfg.timm_model_name: | |
| # visual = TimmModel( | |
| # vision_cfg.timm_model_name, | |
| # pretrained=vision_cfg.timm_model_pretrained, | |
| # pool=vision_cfg.timm_pool, | |
| # proj=vision_cfg.timm_proj, | |
| # proj_bias=vision_cfg.timm_proj_bias, | |
| # embed_dim=embed_dim, | |
| # image_size=vision_cfg.image_size | |
| # ) | |
| # act_layer = nn.GELU # so that text transformer doesn't use QuickGELU w/ timm models | |
| raise ValueError | |
| elif isinstance(vision_cfg.layers, (tuple, list)): | |
| vision_heads = vision_cfg.width * 32 // vision_cfg.head_width | |
| visual = ModifiedResNet( | |
| layers=vision_cfg.layers, | |
| output_dim=embed_dim, | |
| heads=vision_heads, | |
| image_size=vision_cfg.image_size, | |
| width=vision_cfg.width | |
| ) | |
| else: | |
| vision_heads = vision_cfg.width // vision_cfg.head_width | |
| norm_layer = LayerNormFp32 if cast_dtype in (torch.float16, torch.bfloat16) else LayerNorm | |
| visual = VisionTransformer( | |
| image_size=vision_cfg.image_size, | |
| patch_size=vision_cfg.patch_size, | |
| width=vision_cfg.width, | |
| layers=vision_cfg.layers, | |
| heads=vision_heads, | |
| mlp_ratio=vision_cfg.mlp_ratio, | |
| ls_init_value=vision_cfg.ls_init_value, | |
| patch_dropout=vision_cfg.patch_dropout, | |
| global_average_pool=vision_cfg.global_average_pool, | |
| output_dim=embed_dim, | |
| act_layer=act_layer, | |
| norm_layer=norm_layer, | |
| ) | |
| return visual | |
| def _build_text_tower( | |
| embed_dim: int, | |
| text_cfg: CLIPTextCfg, | |
| quick_gelu: bool = False, | |
| cast_dtype: Optional[torch.dtype] = None, | |
| ): | |
| if isinstance(text_cfg, dict): | |
| text_cfg = CLIPTextCfg(**text_cfg) | |
| if text_cfg.hf_model_name: | |
| text = HFTextEncoder( | |
| text_cfg.hf_model_name, | |
| output_dim=embed_dim, | |
| tokenizer_name=text_cfg.hf_tokenizer_name, | |
| proj=text_cfg.proj, | |
| pooler_type=text_cfg.pooler_type, | |
| masked_language_modeling=text_cfg.masked_language_modeling | |
| ) | |
| else: | |
| act_layer = QuickGELU if quick_gelu else nn.GELU | |
| norm_layer = LayerNorm | |
| text = TextTransformer( | |
| context_length=text_cfg.context_length, | |
| vocab_size=text_cfg.vocab_size, | |
| width=text_cfg.width, | |
| heads=text_cfg.heads, | |
| layers=text_cfg.layers, | |
| ls_init_value=text_cfg.ls_init_value, | |
| output_dim=embed_dim, | |
| act_layer=act_layer, | |
| norm_layer= FusedLayerNorm if text_cfg.fusedLN else norm_layer, | |
| xattn=text_cfg.xattn, | |
| attn_mask=text_cfg.attn_mask, | |
| ) | |
| return text | |
| class CLIP(nn.Module): | |
| def __init__( | |
| self, | |
| embed_dim: int, | |
| vision_cfg: CLIPVisionCfg, | |
| text_cfg: CLIPTextCfg, | |
| quick_gelu: bool = False, | |
| cast_dtype: Optional[torch.dtype] = None, | |
| ): | |
| super().__init__() | |
| self.visual = _build_vision_tower(embed_dim, vision_cfg, quick_gelu, cast_dtype) | |
| text = _build_text_tower(embed_dim, text_cfg, quick_gelu, cast_dtype) | |
| self.transformer = text.transformer | |
| self.vocab_size = text.vocab_size | |
| self.token_embedding = text.token_embedding | |
| self.positional_embedding = text.positional_embedding | |
| self.ln_final = text.ln_final | |
| self.text_projection = text.text_projection | |
| self.register_buffer('attn_mask', text.attn_mask, persistent=False) | |
| self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07)) | |
| def lock_image_tower(self, unlocked_groups=0, freeze_bn_stats=False): | |
| # lock image tower as per LiT - https://arxiv.org/abs/2111.07991 | |
| self.visual.lock(unlocked_groups=unlocked_groups, freeze_bn_stats=freeze_bn_stats) | |
| def set_grad_checkpointing(self, enable=True): | |
| self.visual.set_grad_checkpointing(enable) | |
| self.transformer.grad_checkpointing = enable | |
| def no_weight_decay(self): | |
| return {'logit_scale'} | |
| def encode_image(self, image, normalize: bool = False): | |
| features = self.visual(image) | |
| return F.normalize(features, dim=-1) if normalize else features | |
| def encode_text(self, text, normalize: bool = False): | |
| cast_dtype = self.transformer.get_cast_dtype() | |
| x = self.token_embedding(text).to(cast_dtype) # [batch_size, n_ctx, d_model] | |
| x = x + self.positional_embedding.to(cast_dtype) | |
| x = x.permute(1, 0, 2) # NLD -> LND | |
| x = self.transformer(x, attn_mask=self.attn_mask) | |
| x = x.permute(1, 0, 2) # LND -> NLD | |
| x = self.ln_final(x) # [batch_size, n_ctx, transformer.width] | |
| # take features from the eot embedding (eot_token is the highest number in each sequence) | |
| x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection | |
| return F.normalize(x, dim=-1) if normalize else x | |
| def forward(self, image, text): | |
| image_features = self.encode_image(image, normalize=True) | |
| text_features = self.encode_text(text, normalize=True) | |
| return image_features, text_features, self.logit_scale.exp() | |
| class CustomCLIP(nn.Module): | |
| def __init__( | |
| self, | |
| embed_dim: int, | |
| vision_cfg: CLIPVisionCfg, | |
| text_cfg: CLIPTextCfg, | |
| quick_gelu: bool = False, | |
| cast_dtype: Optional[torch.dtype] = None, | |
| itm_task: bool = False, | |
| ): | |
| super().__init__() | |
| self.visual = _build_vision_tower(embed_dim, vision_cfg, quick_gelu, cast_dtype) | |
| self.text = _build_text_tower(embed_dim, text_cfg, quick_gelu, cast_dtype) | |
| self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07)) | |
| def lock_image_tower(self, unlocked_groups=0, freeze_bn_stats=False): | |
| # lock image tower as per LiT - https://arxiv.org/abs/2111.07991 | |
| self.visual.lock(unlocked_groups=unlocked_groups, freeze_bn_stats=freeze_bn_stats) | |
| def lock_text_tower(self, unlocked_layers:int=0, freeze_layer_norm:bool=True): | |
| self.text.lock(unlocked_layers, freeze_layer_norm) | |
| def set_grad_checkpointing(self, enable=True): | |
| self.visual.set_grad_checkpointing(enable) | |
| self.text.set_grad_checkpointing(enable) | |
| def no_weight_decay(self): | |
| return {'logit_scale'} | |
| def encode_image(self, image, normalize: bool = False): | |
| features = self.visual(image) | |
| return F.normalize(features, dim=-1) if normalize else features | |
| def encode_text(self, text, normalize: bool = False): | |
| features = self.text(text) | |
| return F.normalize(features, dim=-1) if normalize else features | |
| def forward(self, image, text): | |
| image_features = self.encode_image(image, normalize=True) | |
| text_features = self.encode_text(text, normalize=True) | |
| return image_features, text_features, self.logit_scale.exp() | |
| def convert_weights_to_lp(model: nn.Module, dtype=torch.float16): | |
| """Convert applicable model parameters to low-precision (bf16 or fp16)""" | |
| def _convert_weights(l): | |
| if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)): | |
| l.weight.data = l.weight.data.to(dtype) | |
| if l.bias is not None: | |
| l.bias.data = l.bias.data.to(dtype) | |
| if isinstance(l, (nn.MultiheadAttention, Attention)): | |
| for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]: | |
| tensor = getattr(l, attr, None) | |
| if tensor is not None: | |
| tensor.data = tensor.data.to(dtype) | |
| if isinstance(l, nn.Parameter): | |
| l.data = l.data.to(dtype) | |
| for name in ["text_projection", "proj"]: | |
| if hasattr(l, name) and isinstance(l, nn.Parameter): | |
| attr = getattr(l, name, None) | |
| if attr is not None: | |
| attr.data = attr.data.to(dtype) | |
| model.apply(_convert_weights) | |
| convert_weights_to_fp16 = convert_weights_to_lp # backwards compat | |
| # used to maintain checkpoint compatibility | |
| def convert_to_custom_text_state_dict(state_dict: dict): | |
| if 'text_projection' in state_dict: | |
| # old format state_dict, move text tower -> .text | |
| new_state_dict = {} | |
| for k, v in state_dict.items(): | |
| if any(k.startswith(p) for p in ( | |
| 'text_projection', | |
| 'positional_embedding', | |
| 'token_embedding', | |
| 'transformer', | |
| 'ln_final', | |
| 'logit_scale' | |
| )): | |
| k = 'text.' + k | |
| new_state_dict[k] = v | |
| return new_state_dict | |
| return state_dict | |
| def build_model_from_openai_state_dict( | |
| state_dict: dict, | |
| quick_gelu=True, | |
| cast_dtype=torch.float16, | |
| ): | |
| vit = "visual.proj" in state_dict | |
| if vit: | |
| vision_width = state_dict["visual.conv1.weight"].shape[0] | |
| vision_layers = len( | |
| [k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")]) | |
| vision_patch_size = state_dict["visual.conv1.weight"].shape[-1] | |
| grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5) | |
| image_size = vision_patch_size * grid_size | |
| else: | |
| counts: list = [ | |
| len(set(k.split(".")[2] for k in state_dict if k.startswith(f"visual.layer{b}"))) for b in [1, 2, 3, 4]] | |
| vision_layers = tuple(counts) | |
| vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0] | |
| output_width = round((state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5) | |
| vision_patch_size = None | |
| assert output_width ** 2 + 1 == state_dict["visual.attnpool.positional_embedding"].shape[0] | |
| image_size = output_width * 32 | |
| embed_dim = state_dict["text_projection"].shape[1] | |
| context_length = state_dict["positional_embedding"].shape[0] | |
| vocab_size = state_dict["token_embedding.weight"].shape[0] | |
| transformer_width = state_dict["ln_final.weight"].shape[0] | |
| transformer_heads = transformer_width // 64 | |
| transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith(f"transformer.resblocks"))) | |
| vision_cfg = CLIPVisionCfg( | |
| layers=vision_layers, | |
| width=vision_width, | |
| patch_size=vision_patch_size, | |
| image_size=image_size, | |
| ) | |
| text_cfg = CLIPTextCfg( | |
| context_length=context_length, | |
| vocab_size=vocab_size, | |
| width=transformer_width, | |
| heads=transformer_heads, | |
| layers=transformer_layers | |
| ) | |
| model = CLIP( | |
| embed_dim, | |
| vision_cfg=vision_cfg, | |
| text_cfg=text_cfg, | |
| quick_gelu=quick_gelu, # OpenAI models were trained with QuickGELU | |
| cast_dtype=cast_dtype, | |
| ) | |
| for key in ["input_resolution", "context_length", "vocab_size"]: | |
| state_dict.pop(key, None) | |
| convert_weights_to_fp16(model) # OpenAI state dicts are partially converted to float16 | |
| model.load_state_dict(state_dict) | |
| return model.eval() | |
| def trace_model(model, batch_size=256, device=torch.device('cpu')): | |
| model.eval() | |
| image_size = model.visual.image_size | |
| example_images = torch.ones((batch_size, 3, image_size, image_size), device=device) | |
| example_text = torch.zeros((batch_size, model.context_length), dtype=torch.int, device=device) | |
| model = torch.jit.trace_module( | |
| model, | |
| inputs=dict( | |
| forward=(example_images, example_text), | |
| encode_text=(example_text,), | |
| encode_image=(example_images,) | |
| )) | |
| model.visual.image_size = image_size | |
| return model | |