Spaces:
Running
on
Zero
Running
on
Zero
| import gc | |
| import cv2 | |
| import insightface | |
| import torch | |
| import torch.nn as nn | |
| from basicsr.utils import img2tensor, tensor2img | |
| from diffusers import ( | |
| DPMSolverMultistepScheduler, | |
| StableDiffusionXLPipeline, | |
| UNet2DConditionModel, | |
| ) | |
| from facexlib.parsing import init_parsing_model | |
| from facexlib.utils.face_restoration_helper import FaceRestoreHelper | |
| from huggingface_hub import hf_hub_download, snapshot_download | |
| from insightface.app import FaceAnalysis | |
| from safetensors.torch import load_file | |
| from torchvision.transforms import InterpolationMode | |
| from torchvision.transforms.functional import normalize, resize | |
| from eva_clip import create_model_and_transforms | |
| from eva_clip.constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD | |
| from pulid.encoders import IDEncoder | |
| from pulid.utils import is_torch2_available | |
| if is_torch2_available(): | |
| from pulid.attention_processor import AttnProcessor2_0 as AttnProcessor | |
| from pulid.attention_processor import IDAttnProcessor2_0 as IDAttnProcessor | |
| else: | |
| from pulid.attention_processor import AttnProcessor, IDAttnProcessor | |
| class PuLIDPipeline: | |
| def __init__(self, *args, **kwargs): | |
| super().__init__() | |
| self.device = 'cuda' | |
| sdxl_base_repo = 'stabilityai/stable-diffusion-xl-base-1.0' | |
| sdxl_lightning_repo = 'ByteDance/SDXL-Lightning' | |
| self.sdxl_base_repo = sdxl_base_repo | |
| # load base model | |
| unet = UNet2DConditionModel.from_config(sdxl_base_repo, subfolder='unet').to(self.device, torch.float16) | |
| unet.load_state_dict( | |
| load_file( | |
| hf_hub_download(sdxl_lightning_repo, 'sdxl_lightning_4step_unet.safetensors'), device=self.device | |
| ) | |
| ) | |
| unet.half() | |
| self.hack_unet_attn_layers(unet) | |
| self.pipe = StableDiffusionXLPipeline.from_pretrained( | |
| sdxl_base_repo, unet=unet, torch_dtype=torch.float16, variant="fp16" | |
| ).to(self.device) | |
| self.pipe.watermark = None | |
| # scheduler | |
| self.pipe.scheduler = DPMSolverMultistepScheduler.from_config( | |
| self.pipe.scheduler.config, timestep_spacing="trailing" | |
| ) | |
| # ID adapters | |
| self.id_adapter = IDEncoder().to(self.device) | |
| # preprocessors | |
| # face align and parsing | |
| self.face_helper = FaceRestoreHelper( | |
| upscale_factor=1, | |
| face_size=512, | |
| crop_ratio=(1, 1), | |
| det_model='retinaface_resnet50', | |
| save_ext='png', | |
| device=self.device, | |
| ) | |
| self.face_helper.face_parse = None | |
| self.face_helper.face_parse = init_parsing_model(model_name='bisenet', device=self.device) | |
| # clip-vit backbone | |
| model, _, _ = create_model_and_transforms('EVA02-CLIP-L-14-336', 'eva_clip', force_custom_clip=True) | |
| model = model.visual | |
| self.clip_vision_model = model.to(self.device) | |
| eva_transform_mean = getattr(self.clip_vision_model, 'image_mean', OPENAI_DATASET_MEAN) | |
| eva_transform_std = getattr(self.clip_vision_model, 'image_std', OPENAI_DATASET_STD) | |
| if not isinstance(eva_transform_mean, (list, tuple)): | |
| eva_transform_mean = (eva_transform_mean,) * 3 | |
| if not isinstance(eva_transform_std, (list, tuple)): | |
| eva_transform_std = (eva_transform_std,) * 3 | |
| self.eva_transform_mean = eva_transform_mean | |
| self.eva_transform_std = eva_transform_std | |
| # antelopev2 | |
| snapshot_download('DIAMONIK7777/antelopev2', local_dir='models/antelopev2') | |
| self.app = FaceAnalysis( | |
| name='antelopev2', root='.', providers=['CPUExecutionProvider'] | |
| ) | |
| self.app.prepare(ctx_id=0, det_size=(640, 640)) | |
| self.handler_ante = insightface.model_zoo.get_model('models/antelopev2/glintr100.onnx', providers=['CPUExecutionProvider']) | |
| self.handler_ante.prepare(ctx_id=0) | |
| print('load done') | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| self.load_pretrain() | |
| # other configs | |
| self.debug_img_list = [] | |
| def hack_unet_attn_layers(self, unet): | |
| id_adapter_attn_procs = {} | |
| for name, _ in unet.attn_processors.items(): | |
| cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim | |
| if name.startswith("mid_block"): | |
| hidden_size = unet.config.block_out_channels[-1] | |
| elif name.startswith("up_blocks"): | |
| block_id = int(name[len("up_blocks.")]) | |
| hidden_size = list(reversed(unet.config.block_out_channels))[block_id] | |
| elif name.startswith("down_blocks"): | |
| block_id = int(name[len("down_blocks.")]) | |
| hidden_size = unet.config.block_out_channels[block_id] | |
| if cross_attention_dim is not None: | |
| id_adapter_attn_procs[name] = IDAttnProcessor( | |
| hidden_size=hidden_size, | |
| cross_attention_dim=cross_attention_dim, | |
| ).to(unet.device) | |
| else: | |
| id_adapter_attn_procs[name] = AttnProcessor() | |
| unet.set_attn_processor(id_adapter_attn_procs) | |
| self.id_adapter_attn_layers = nn.ModuleList(unet.attn_processors.values()) | |
| def load_pretrain(self): | |
| hf_hub_download('guozinan/PuLID', 'pulid_v1.bin', local_dir='models') | |
| ckpt_path = 'models/pulid_v1.bin' | |
| state_dict = torch.load(ckpt_path, map_location='cpu') | |
| state_dict_dict = {} | |
| for k, v in state_dict.items(): | |
| module = k.split('.')[0] | |
| state_dict_dict.setdefault(module, {}) | |
| new_k = k[len(module) + 1 :] | |
| state_dict_dict[module][new_k] = v | |
| for module in state_dict_dict: | |
| print(f'loading from {module}') | |
| getattr(self, module).load_state_dict(state_dict_dict[module], strict=True) | |
| def to_gray(self, img): | |
| x = 0.299 * img[:, 0:1] + 0.587 * img[:, 1:2] + 0.114 * img[:, 2:3] | |
| x = x.repeat(1, 3, 1, 1) | |
| return x | |
| def get_id_embedding(self, image): | |
| """ | |
| Args: | |
| image: numpy rgb image, range [0, 255] | |
| """ | |
| self.face_helper.clean_all() | |
| image_bgr = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) | |
| # get antelopev2 embedding | |
| face_info = self.app.get(image_bgr) | |
| if len(face_info) > 0: | |
| face_info = sorted(face_info, key=lambda x: (x['bbox'][2] - x['bbox'][0]) * x['bbox'][3] - x['bbox'][1])[ | |
| -1 | |
| ] # only use the maximum face | |
| id_ante_embedding = face_info['embedding'] | |
| self.debug_img_list.append( | |
| image[ | |
| int(face_info['bbox'][1]) : int(face_info['bbox'][3]), | |
| int(face_info['bbox'][0]) : int(face_info['bbox'][2]), | |
| ] | |
| ) | |
| else: | |
| id_ante_embedding = None | |
| # using facexlib to detect and align face | |
| self.face_helper.read_image(image_bgr) | |
| self.face_helper.get_face_landmarks_5(only_center_face=True) | |
| self.face_helper.align_warp_face() | |
| if len(self.face_helper.cropped_faces) == 0: | |
| raise RuntimeError('facexlib align face fail') | |
| align_face = self.face_helper.cropped_faces[0] | |
| # incase insightface didn't detect face | |
| if id_ante_embedding is None: | |
| print('fail to detect face using insightface, extract embedding on align face') | |
| id_ante_embedding = self.handler_ante.get_feat(align_face) | |
| id_ante_embedding = torch.from_numpy(id_ante_embedding).to(self.device) | |
| if id_ante_embedding.ndim == 1: | |
| id_ante_embedding = id_ante_embedding.unsqueeze(0) | |
| # parsing | |
| input = img2tensor(align_face, bgr2rgb=True).unsqueeze(0) / 255.0 | |
| input = input.to(self.device) | |
| parsing_out = self.face_helper.face_parse(normalize(input, [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]))[0] | |
| parsing_out = parsing_out.argmax(dim=1, keepdim=True) | |
| bg_label = [0, 16, 18, 7, 8, 9, 14, 15] | |
| bg = sum(parsing_out == i for i in bg_label).bool() | |
| white_image = torch.ones_like(input) | |
| # only keep the face features | |
| face_features_image = torch.where(bg, white_image, self.to_gray(input)) | |
| self.debug_img_list.append(tensor2img(face_features_image, rgb2bgr=False)) | |
| # transform img before sending to eva-clip-vit | |
| face_features_image = resize(face_features_image, self.clip_vision_model.image_size, InterpolationMode.BICUBIC) | |
| face_features_image = normalize(face_features_image, self.eva_transform_mean, self.eva_transform_std) | |
| id_cond_vit, id_vit_hidden = self.clip_vision_model( | |
| face_features_image, return_all_features=False, return_hidden=True, shuffle=False | |
| ) | |
| id_cond_vit_norm = torch.norm(id_cond_vit, 2, 1, True) | |
| id_cond_vit = torch.div(id_cond_vit, id_cond_vit_norm) | |
| id_cond = torch.cat([id_ante_embedding, id_cond_vit], dim=-1) | |
| id_uncond = torch.zeros_like(id_cond) | |
| id_vit_hidden_uncond = [] | |
| for layer_idx in range(0, len(id_vit_hidden)): | |
| id_vit_hidden_uncond.append(torch.zeros_like(id_vit_hidden[layer_idx])) | |
| id_embedding = self.id_adapter(id_cond, id_vit_hidden) | |
| uncond_id_embedding = self.id_adapter(id_uncond, id_vit_hidden_uncond) | |
| # return id_embedding | |
| return torch.cat((uncond_id_embedding, id_embedding), dim=0) | |
| def inference(self, prompt, size, prompt_n='', image_embedding=None, id_scale=1.0, guidance_scale=1.2, steps=4): | |
| images = self.pipe( | |
| prompt=prompt, | |
| negative_prompt=prompt_n, | |
| num_images_per_prompt=size[0], | |
| height=size[1], | |
| width=size[2], | |
| num_inference_steps=steps, | |
| guidance_scale=guidance_scale, | |
| cross_attention_kwargs={'id_embedding': image_embedding, 'id_scale': id_scale}, | |
| ).images | |
| return images | |