Spaces:
Running
on
Zero
Running
on
Zero
| import importlib | |
| import os | |
| import random | |
| import cv2 | |
| import numpy as np | |
| import torch | |
| import torch.nn.functional as F | |
| from transformers import PretrainedConfig | |
| def seed_everything(seed): | |
| os.environ["PL_GLOBAL_SEED"] = str(seed) | |
| random.seed(seed) | |
| np.random.seed(seed) | |
| torch.manual_seed(seed) | |
| torch.cuda.manual_seed_all(seed) | |
| def is_torch2_available(): | |
| return hasattr(F, "scaled_dot_product_attention") | |
| def instantiate_from_config(config): | |
| if "target" not in config: | |
| if config == '__is_first_stage__' or config == "__is_unconditional__": | |
| return None | |
| raise KeyError("Expected key `target` to instantiate.") | |
| return get_obj_from_str(config["target"])(**config.get("params", {})) | |
| def get_obj_from_str(string, reload=False): | |
| module, cls = string.rsplit(".", 1) | |
| if reload: | |
| module_imp = importlib.import_module(module) | |
| importlib.reload(module_imp) | |
| return getattr(importlib.import_module(module, package=None), cls) | |
| def drop_seq_token(seq, drop_rate=0.5): | |
| idx = torch.randperm(seq.size(1)) | |
| num_keep_tokens = int(len(idx) * (1 - drop_rate)) | |
| idx = idx[:num_keep_tokens] | |
| seq = seq[:, idx] | |
| return seq | |
| def import_model_class_from_model_name_or_path( | |
| pretrained_model_name_or_path: str, revision: str, subfolder: str = "text_encoder" | |
| ): | |
| text_encoder_config = PretrainedConfig.from_pretrained( | |
| pretrained_model_name_or_path, subfolder=subfolder, revision=revision | |
| ) | |
| model_class = text_encoder_config.architectures[0] | |
| if model_class == "CLIPTextModel": | |
| from transformers import CLIPTextModel | |
| return CLIPTextModel | |
| elif model_class == "CLIPTextModelWithProjection": # noqa RET505 | |
| from transformers import CLIPTextModelWithProjection | |
| return CLIPTextModelWithProjection | |
| else: | |
| raise ValueError(f"{model_class} is not supported.") | |
| def resize_numpy_image_long(image, resize_long_edge=768): | |
| h, w = image.shape[:2] | |
| if max(h, w) <= resize_long_edge: | |
| return image | |
| k = resize_long_edge / max(h, w) | |
| h = int(h * k) | |
| w = int(w * k) | |
| image = cv2.resize(image, (w, h), interpolation=cv2.INTER_LANCZOS4) | |
| return image | |