Spaces:
Running
on
Zero
Running
on
Zero
| import torch | |
| import torch.nn.functional as F | |
| from transformers import AutoTokenizer, AutoModel, AutoImageProcessor | |
| import gradio as gr | |
| import spaces | |
| import torch | |
| # neuralmind/bert-base-portuguese-cased | |
| ModelName = "neuralmind/bert-base-portuguese-cased" | |
| model = AutoModel.from_pretrained(ModelName) | |
| tokenizer = AutoTokenizer.from_pretrained(ModelName, do_lower_case=False) | |
| processor = AutoImageProcessor.from_pretrained("nomic-ai/nomic-embed-vision-v1.5") | |
| vision_model = AutoModel.from_pretrained("nomic-ai/nomic-embed-vision-v1.5", trust_remote_code=True) | |
| # tokenizer = AutoTokenizer.from_pretrained('nomic-ai/nomic-embed-text-v1.5') | |
| # text_model = AutoModel.from_pretrained('nomic-ai/nomic-embed-text-v1.5', trust_remote_code=True) | |
| # text_model.eval() | |
| def mean_pooling(model_output, attention_mask): | |
| token_embeddings = model_output[0] | |
| input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() | |
| return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) | |
| def TxtEmbed(text): | |
| input_ids = tokenizer.encode(text, return_tensors='pt') | |
| with torch.no_grad(): | |
| outs = model(input_ids) | |
| encoded = outs[0][0, 1:-1] # Ignore [CLS] and [SEP] special tokens | |
| return (encoded.tolist())[0]; | |
| #sentences = [text] | |
| #encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') | |
| # | |
| #with torch.no_grad(): | |
| # model_output = text_model(**encoded_input) | |
| # | |
| #text_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) | |
| #text_embeddings = F.layer_norm(text_embeddings, normalized_shape=(text_embeddings.shape[1],)) | |
| #text_embeddings = F.normalize(text_embeddings, p=2, dim=1) | |
| # | |
| # return (text_embeddings.tolist)[0] | |
| with gr.Blocks() as demo: | |
| txt = gr.Text(); | |
| out = gr.Text(); | |
| btn = gr.Button("Gerar embeddings") | |
| btn.click(TxtEmbed, [txt], [out]) | |
| if __name__ == "__main__": | |
| demo.launch(show_api=True) |