Spaces:
Running
Running
File size: 80,710 Bytes
2d48e71 8567af0 2d48e71 6607eec 7ab9922 6607eec 2d48e71 6607eec 2d48e71 f392c65 2d48e71 b4d4d0b 2d48e71 f392c65 6607eec f392c65 6607eec f392c65 2d48e71 6607eec 2d48e71 6607eec 2d48e71 6607eec 2d48e71 0ffa97e 2d48e71 6607eec 2d48e71 6607eec 14c9d27 2d48e71 f85db64 2d48e71 ad62b50 2d48e71 ad62b50 2d48e71 ad62b50 2d48e71 ad62b50 2d48e71 ad62b50 2d48e71 6607eec 2d48e71 ad62b50 2d48e71 ad62b50 2d48e71 b4d4d0b 2d48e71 521c324 2d48e71 521c324 2d48e71 521c324 2d48e71 6607eec 521c324 2d48e71 521c324 2d48e71 6607eec 521c324 2d48e71 521c324 2d48e71 6607eec 2d48e71 6607eec 2d48e71 6607eec 2d48e71 6607eec cf6b8f4 2d48e71 6607eec 2d48e71 6607eec cf6b8f4 2d48e71 c520dc8 d1bf343 60eee72 6607eec 60eee72 6607eec 60eee72 6607eec c520dc8 ad62b50 2d48e71 d8e2ee7 f85db64 e960f16 e2db0d2 d8e2ee7 b2abc12 2d48e71 cf82909 b0b1562 2d48e71 9d218d2 b2f808d 9d218d2 2d48e71 b2f808d 2d48e71 6607eec 2d48e71 6607eec 2d48e71 44dd466 1cdb4c6 44dd466 2d48e71 d9fd6b3 2d48e71 37e6192 2d48e71 f392c65 2d48e71 f2c5dfc 2d48e71 f392c65 2d48e71 0ffa97e 2d48e71 e9e1d4d 2d48e71 1ffcfc0 2d48e71 5355a9e 2d48e71 c09823a b4d4d0b 2d48e71 8567af0 2d48e71 8567af0 cfcb574 8567af0 cfcb574 8567af0 cfcb574 2d48e71 9ecb3ff cfcb574 2d48e71 d9fd6b3 28343bf 2d48e71 e960f16 9ecb3ff dbb9e74 e960f16 dbb9e74 2d48e71 e960f16 2d48e71 c520dc8 0d63b88 2d48e71 f392c65 2d48e71 c520dc8 f392c65 0ffa97e 6607eec 0ffa97e c520dc8 f392c65 c520dc8 6607eec c520dc8 6607eec 0ffa97e 2d48e71 c520dc8 f392c65 0d63b88 f392c65 ad62b50 0d63b88 f392c65 0d63b88 f392c65 c520dc8 ad62b50 f392c65 ad62b50 0d63b88 2d48e71 c520dc8 0ffa97e 2d48e71 44dd466 2d48e71 6607eec 2d48e71 6607eec 2d48e71 6607eec 9d218d2 2d48e71 0d63b88 2d48e71 d1bf343 2d48e71 6607eec 2d48e71 9d218d2 b2f808d 2d48e71 9d218d2 2d48e71 b2f808d 6607eec b2f808d 44dd466 6607eec 44dd466 6607eec 44dd466 6607eec 44dd466 2c10d52 44dd466 2c10d52 44dd466 2d48e71 6607eec 44dd466 b4d4d0b 44dd466 cf6b8f4 2d48e71 6607eec c849b7e 2d48e71 6607eec cf6b8f4 2d48e71 b2f808d 2d48e71 6607eec 2d48e71 b2f808d 9d218d2 6607eec 9d218d2 2d48e71 b2f808d 2d48e71 b2f808d 6607eec 2d48e71 b2f808d c09823a 6607eec 2d48e71 b2f808d 2d48e71 ad62b50 b2f808d 2d48e71 b2f808d 2d48e71 b2f808d 6607eec c09823a b2f808d 2d48e71 c09823a 6607eec 2d48e71 6607eec b2f808d 2d48e71 b2f808d ad62b50 b2f808d 2d48e71 6607eec 2d48e71 cfcb574 8567af0 cfcb574 2d48e71 8567af0 6607eec 2d48e71 c09823a 6607eec ad62b50 2d48e71 6607eec ad62b50 2d48e71 b2f808d 6607eec d9fd6b3 2d48e71 8567af0 cfcb574 2d48e71 ad62b50 8567af0 2d48e71 ad62b50 8567af0 2d48e71 cfcb574 6607eec d9fd6b3 5d4bac2 8567af0 5d4bac2 8567af0 5d4bac2 b2f808d 5d4bac2 b2f808d 8567af0 2d48e71 b2f808d 5d4bac2 2d48e71 d9fd6b3 6607eec b2f808d cfcb574 ad62b50 2d48e71 6607eec 2d48e71 c09823a 6607eec b2f808d 2d48e71 c09823a 6607eec b2f808d ad62b50 2d48e71 b2f808d 2d48e71 b2f808d 6607eec ad62b50 b2f808d 2d48e71 c09823a 2d48e71 c09823a b2f808d 2d48e71 b2f808d 6607eec c09823a b2f808d 2d48e71 6607eec 2d48e71 8cbcc86 0d63b88 7da2b24 28343bf 7da2b24 28343bf 7da2b24 ad62b50 28343bf ad62b50 28343bf 2d48e71 9d218d2 2d48e71 d9fd6b3 2d48e71 6607eec 9d218d2 2d48e71 0ffa97e 2d48e71 44dd466 2d48e71 9d218d2 2d48e71 9d218d2 b2f808d 6607eec 9d218d2 b2f808d 2d48e71 b2f808d 9d218d2 2d48e71 cfcb574 2d48e71 cfcb574 2d48e71 d9fd6b3 2d48e71 c520dc8 2d48e71 6607eec 60eee72 2d48e71 bd8dfd2 60eee72 c520dc8 2d48e71 60eee72 2d48e71 4a0bfc6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 |
import datetime
from datetime import timezone, timedelta # タイムゾーン対応のために追加
import json
import os
import re # ファイル名サニタイズ用
import sys
import torch
import numpy as np # シード設定用
import random # シード設定用
from pathlib import Path
import time # sleep用
import gradio as gr
import shutil # フォルダ/ファイル名変更用, ファイルコピー用
import pyopenjtalk
import io # メモリ上でのファイル操作用
from pydub import AudioSegment # 結合機能のために追加
import hashlib # メタデータハッシュ化用
import math # ダミー計算用, 容量計算用, 音量計算用
import tempfile # 一時ファイル作成用
import functools
import uuid # 結合ファイルの一意な名前生成のために追加
from typing import Dict, Any, List, Tuple, Optional, Set
# --- ログ設定 ---
# TrueにするとターナルとUIに詳細なログが出力されます。
# Falseにすると、エラーや重要な通知以外のログは抑制されます。
ENABLE_LOGGING = False
# --- タイムゾーン定義 ---
# グローバルな定数としてJSTを定義
JST = timezone(timedelta(hours=9), 'JST')
# --- モック(本来はライブラリからインポート) ---
class TTSModelHolder:
def __init__(self, root_dir="model_assets"):
self.root_dir = Path(root_dir)
self.model_names = []
self.current_model = None
self._setup_root_dir_and_samples()
self.refresh() # 初回読み込み
def _setup_root_dir_and_samples(self):
"""ルートディレクトリの存在を確認し、空であればサンプルモデルを作成する。"""
p = self.root_dir
if not p.is_dir():
p.mkdir(parents=True, exist_ok=True)
# 起動時に一度だけサンプルモデルを作成するロジック
if not any(p.iterdir()):
if ENABLE_LOGGING:
print("No models found in model_assets. Creating sample models...")
# Sample Model 1
model1_path = p / "MyModel1"
model1_path.mkdir(parents=True, exist_ok=True)
(model1_path / "G_0.safetensors").touch()
config1 = {"data": {"style2id": {"Neutral": 0, "喜び": 1, "悲しみ": 2}}}
with open(model1_path / "config.json", "w", encoding="utf-8") as f:
json.dump(config1, f, indent=2)
# Sample Model 2 (with multiple safetensors and custom styles)
model2_path = p / "mikeneko"
model2_path.mkdir(parents=True, exist_ok=True)
(model2_path / "G_mikeneko_v1.safetensors").touch()
(model2_path / "G_mikeneko_v2_experimental.safetensors").touch()
config2 = {"data": {"style2id": {"Neutral": 0, "1": 1, "2": 2}}}
with open(model2_path / "config.json", "w", encoding="utf-8") as f:
json.dump(config2, f, indent=2)
style_settings_data = {
"styles": {
"0": { "display_name": "Neutral", "weight": 1.0 },
"1": { "display_name": "クール", "weight": 0.8 },
"2": { "display_name": "可愛い", "weight": 1.2 },
}
}
with open(model2_path / "style_settings.json", "w", encoding="utf-8") as f:
json.dump(style_settings_data, f, indent=2, ensure_ascii=False)
# FNモデル (FN1-10)
if ENABLE_LOGGING:
print("Creating FN models (FN1-10)...")
for i in range(1, 11):
fn_path = p / f"FN{i}"
fn_path.mkdir(exist_ok=True)
(fn_path / "G_0.safetensors").touch()
with open(fn_path / "config.json", "w") as f:
json.dump({"data": {"style2id": {"Neutral": 0}}}, f)
# whisperモデル (非表示用)
if ENABLE_LOGGING:
print("Creating 'whisper' model...")
whisper_path = p / "whisper"
whisper_path.mkdir(exist_ok=True)
(whisper_path / "G_0.safetensors").touch()
with open(whisper_path / "config.json", "w") as f:
json.dump({"data": {"style2id": {"Neutral": 0}}}, f)
def refresh(self) -> List[str]:
"""
モデルディレクトリを再スキャンし、内部のモデルリストを更新する。
更新後のモデルリストを返す。
"""
if self.root_dir.is_dir():
self.model_names = sorted([d.name for d in self.root_dir.iterdir() if d.is_dir()])
if ENABLE_LOGGING:
print(f"TTSModelHolder model list refreshed. Known models: {self.model_names}")
else:
self.model_names = []
if ENABLE_LOGGING:
print("TTSModelHolder root directory not found.")
return self.model_names
def get_model(self, model_name, model_path):
if ENABLE_LOGGING:
print(f"Loading model: {model_name} (file: {Path(model_path).name})")
if model_name not in self.model_names:
error_msg = (
f"Model '{model_name}' is not in the known list of TTSModelHolder. "
f"Current list: {self.model_names}. "
"Please refresh the model list by toggling the symlink checkbox or clicking the refresh button."
)
if ENABLE_LOGGING:
print(f"[ERROR] {error_msg}")
raise ValueError(error_msg)
self.current_model = MockTTSModel()
return self.current_model
class MockTTSModel:
def __init__(self):
self.spk2id = {"speaker_0": 0, "speaker_1": 1}
def infer(self, text, **kwargs):
length_scale = kwargs.get('length', 1.0)
if ENABLE_LOGGING:
print(f"Inferencing with text '{text}' and style: {kwargs.get('style')} and weight: {kwargs.get('style_weight')}, length_scale: {length_scale}")
sampling_rate = 44100
base_duration = max(1, len(text) // 5)
duration = base_duration * length_scale
dummy_audio = (torch.randn(int(sampling_rate * duration)) * 0.1 * 32767).numpy().astype("int16")
return sampling_rate, dummy_audio
class InvalidToneError(Exception): pass
class Languages:
JP, EN, ZH = "JP", "EN", "ZH"
@classmethod
@property
def value(cls):
return [cls.JP, cls.EN, cls.ZH]
GRADIO_THEME = "soft"
DEFAULT_ASSIST_TEXT_WEIGHT=0.5
DEFAULT_LENGTH=1.0
DEFAULT_NOISE=0.6
DEFAULT_NOISEW=0.8
DEFAULT_SDP_RATIO=0.2
DEFAULT_STYLE="Neutral"
DEFAULT_STYLE_WEIGHT=1.0
DEFAULT_WORKBENCH_PAUSE = 250
OUTPUT_SIZE_LIMIT_GB = 5
OUTPUT_SIZE_LIMIT_BYTES = OUTPUT_SIZE_LIMIT_GB * 1024**3
# --- ヘルパー関数 ---
STYLE_CONFIG_FILENAME_IN_MODEL_DIR = "style_settings.json"
assets_root_path = Path("model_assets")
INVALID_FILENAME_CHARS_PATTERN = r'[\\/*:"<>|_]'
INVALID_FILENAME_CHARS_FOR_DISPLAY = r'\ / * : " < > | _'
def sanitize_filename(name: str) -> str:
"""ファイル名として使えない文字をハイフンに置換する。"""
return re.sub(r'[\\/*?:"<>|]', '-', name)
def parse_merged_model_name(name: str) -> Optional[Tuple[str, List[int]]]:
parts = re.findall(r'([^_]+)_(\d+)p', name)
if not parts: return None
reconstructed_name = "_".join([f"{model_part}_{percent_part}p" for model_part, percent_part in parts])
if reconstructed_name != name: return None
sorted_parts = sorted(parts, key=lambda p: int(p[1]), reverse=True)
display_name = " ".join([f"{name_part} {percent_part}%" for name_part, percent_part in sorted_parts])
percentages = [int(p[1]) for p in sorted_parts]
return display_name, percentages
def format_and_sort_model_names(dir_list: List[str]) -> List[Tuple[str, str]]:
parsed_models, unparsed_models = [], []
for name in dir_list:
result = parse_merged_model_name(name)
if result:
display_name, percentages = result
parsed_models.append({'display': display_name, 'original': name, 'sort_key': percentages})
else:
unparsed_models.append((name, name))
sorted_parsed = sorted(parsed_models, key=lambda x: x['sort_key'], reverse=True)
result_list = [(m['display'], m['original']) for m in sorted_parsed]
result_list.extend(sorted(unparsed_models))
return result_list
def sort_models_by_custom_order(model_list: List[str], custom_order: List[str]) -> List[str]:
"""
モデルのリストをカスタム順序に基づいてソートする。
カスタム順序リストに含まれるモデルが先頭に、指定された順で並ぶ。
残りのモデルはその後ろにアルファベット順で続く。
"""
sorted_list = []
remaining_models = set(model_list)
# カスタム順序リストに基づいてモデルを追加
for model_name in custom_order:
if model_name in remaining_models:
sorted_list.append(model_name)
remaining_models.remove(model_name)
# 残りのモデルをアルファベット順で追加
sorted_list.extend(sorted(list(remaining_models)))
return sorted_list
def set_random_seed(seed: int):
if seed >= 0:
if ENABLE_LOGGING:
print(f"Setting random seed to: {seed}")
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
def get_directory_size(directory_path: Path) -> int:
total_size = 0
try:
for dirpath, _, filenames in os.walk(directory_path):
for f in filenames:
fp = os.path.join(dirpath, f)
if not os.path.islink(fp):
try:
total_size += os.path.getsize(fp)
except OSError: pass
except FileNotFoundError: return 0
return total_size
def format_bytes(size_bytes: int) -> str:
if size_bytes == 0: return "0 B"
size_name = ("B", "KB", "MB", "GB", "TB")
i = int(math.floor(math.log(size_bytes, 1024)))
p = math.pow(1024, i)
s = round(size_bytes / p, 2)
return f"{s} {size_name[i]}"
# --- pyopenjtalk関連ヘルパー関数 ---
JIRITSUGO_POS = ["名詞", "動詞", "形容詞", "副詞", "連体詞", "接続詞", "感動詞", "接頭詞"]
def is_jirisugo(morpheme):
if morpheme['pos'] == '記号': return False
return morpheme['pos'] in JIRITSUGO_POS
def contains_kanji(text): return bool(re.search(r'[\u4e00-\u9faf]', text))
def kata2hira(text): return "".join(chr(ord(ch) - 96) if "ァ" <= ch <= "ヶ" else ch for ch in text)
def is_only_katakana(text): return bool(re.fullmatch(r'[\u30A1-\u30F6\u30FC]+', text))
def hiraganize_kanji_parts(block_text):
morphemes = pyopenjtalk.run_frontend(block_text)
if not morphemes: return block_text
result_parts = []
for m in morphemes:
if contains_kanji(m['string']):
reading_kata = m['read'] if 'read' in m and m['read'] != '*' else pyopenjtalk.g2p(m['string'], kana=True)
result_parts.append(kata2hira(reading_kata))
else: result_parts.append(m['string'])
return "".join(result_parts)
def split_into_bunsetsu(text):
if not text: return []
morphemes = pyopenjtalk.run_frontend(text)
result_list, current_unit = [], ""
for m in morphemes:
word = m['string']
if not current_unit or is_jirisugo(m) or m['pos'] == '記号':
if current_unit: result_list.append(current_unit)
current_unit = word
else: current_unit += word
if current_unit: result_list.append(current_unit)
final_result = []
for i, bunsetsu in enumerate(result_list):
if i > 0 and bunsetsu in "。、!?.,":
if final_result: final_result[-1] += bunsetsu
else: final_result.append(bunsetsu)
else: final_result.append(bunsetsu)
return final_result
def create_katakana_mixed_sentence(text, ratio=0.3):
if not text: return ""
bunsetsu_list = split_into_bunsetsu(text)
if not bunsetsu_list: return ""
num_to_convert = round(len(bunsetsu_list) * ratio)
if ratio > 0 and num_to_convert == 0 and len(bunsetsu_list) > 0: num_to_convert = 1
if num_to_convert == 0: return "".join(bunsetsu_list)
k = min(num_to_convert, len(bunsetsu_list))
indices_to_convert = random.sample(range(len(bunsetsu_list)), k=k)
new_bunsetsu_list = list(bunsetsu_list)
for i in indices_to_convert: new_bunsetsu_list[i] = pyopenjtalk.g2p(new_bunsetsu_list[i], kana=True)
return "".join(new_bunsetsu_list)
def process_random_hiraganization(blocks):
new_blocks = []
for block in blocks:
if contains_kanji(block):
rand_val = random.random()
if rand_val < 0.25: new_blocks.append(kata2hira(pyopenjtalk.g2p(block, kana=True)))
elif rand_val < 0.5: new_blocks.append(hiraganize_kanji_parts(block))
else: new_blocks.append(block)
elif is_only_katakana(block):
if random.random() < 0.5: new_blocks.append(kata2hira(block))
else: new_blocks.append(block)
else: new_blocks.append(block)
return new_blocks
def generate_one_variation(base_text, mode: int, ratio: float) -> List[str]:
text_to_process = create_katakana_mixed_sentence(base_text, ratio)
if mode == 2: results = [m['string'] for m in pyopenjtalk.run_frontend(text_to_process)]
elif mode == 3:
morphemes = pyopenjtalk.run_frontend(text_to_process)
if not morphemes: return []
result_list, current_unit, is_current_jiri = [], "", False
initial_type_set = False
for m in morphemes:
if m['pos'] != '記号': is_current_jiri = is_jirisugo(m); initial_type_set = True; break
if not initial_type_set: return [m['string'] for m in morphemes]
for m in morphemes:
word = m['string']
if m['pos'] == '記号':
if current_unit: result_list.append(current_unit)
result_list.append(word); current_unit = ""
continue
is_m_jiri = is_jirisugo(m)
if current_unit and is_m_jiri != is_current_jiri:
result_list.append(current_unit); current_unit = word; is_current_jiri = is_m_jiri
else:
current_unit += word; is_current_jiri = is_m_jiri
if current_unit: result_list.append(current_unit)
results = result_list
elif mode == 4: results = split_into_bunsetsu(text_to_process)
elif mode == 5:
morphemes = pyopenjtalk.run_frontend(text_to_process)
result_list, current_unit = [], ""
for m in morphemes:
current_unit += m['string']
if m['pos'] == '記号' and m['string'] in ['。', '!', '?', '.', '、', ',']: result_list.append(current_unit.strip()); current_unit = ""
elif m['pos'] == '助詞' and m['pos_group1'] == '接続助詞': result_list.append(current_unit.strip()); current_unit = ""
elif m['pos'] in ['動詞', '形容詞'] and m['ctype'] == '終止形': result_list.append(current_unit.strip()); current_unit = ""
elif m['pos'] == '助動詞' and m['string'] in ['だ', 'です', 'ます']: result_list.append(current_unit.strip()); current_unit = ""
if current_unit.strip(): result_list.append(current_unit.strip())
results = [c for c in result_list if c]
else: results = [text_to_process]
if results: results = process_random_hiraganization(results)
return results
# --- ここまで pyopenjtalk関連ヘルパー関数 ---
def find_safetensors_files_webui(model_dir_path_str: str):
model_dir_path = Path(model_dir_path_str)
if not model_dir_path.is_dir(): return []
return sorted([f.name for f in model_dir_path.glob("*.safetensors")])
def load_styles_from_model_folder(model_asset_path: Path) -> Dict[str, Any]:
# 最終的に返すデータ構造は変更しない (キーは config.json のスタイル名)
final_styles: Dict[str, Any] = {}
# --- ステップ1: config.json からスタイル名とIDのマッピングを作成 ---
style_name_to_id: Dict[str, int] = {}
id_to_style_name: Dict[str, str] = {} # IDから元のスタイル名に戻すための逆引き辞書
config_path = model_asset_path / "config.json"
if config_path.exists():
try:
with open(config_path, 'r', encoding='utf-8') as f:
config_data = json.load(f)
if isinstance(config_data, dict) and "data" in config_data and "style2id" in config_data["data"]:
style2id = config_data["data"]["style2id"]
if isinstance(style2id, dict):
style_name_to_id = style2id
# ID -> スタイル名の逆引き辞書を作成
for name, style_id in style_name_to_id.items():
id_to_style_name[str(style_id)] = name # JSONキーは文字列なのでstr()で変換
# まずは config.json の情報で final_styles を初期化
for style_name in style_name_to_id.keys():
final_styles[style_name] = {"display_name": style_name, "weight": DEFAULT_STYLE_WEIGHT}
except Exception as e:
if ENABLE_LOGGING:
print(f"Warning: Failed to load or parse {config_path}: {e}")
# --- ステップ2: style_settings.json をID基準でマージ ---
custom_style_config_path = model_asset_path / STYLE_CONFIG_FILENAME_IN_MODEL_DIR
if custom_style_config_path.exists():
try:
with open(custom_style_config_path, 'r', encoding='utf-8') as f:
custom_data = json.load(f)
if isinstance(custom_data, dict) and "styles" in custom_data and isinstance(custom_data["styles"], dict):
loaded_custom_styles = custom_data["styles"]
# custom_style のキー (IDのはず) をループ
for style_id_str, style_info in loaded_custom_styles.items():
# ID (文字列) が逆引き辞書に存在するかチェック
if style_id_str in id_to_style_name:
# IDから元のスタイル名を取得
original_style_name = id_to_style_name[style_id_str]
# final_styles の該当するスタイル名のエントリを更新
if original_style_name in final_styles:
final_styles[original_style_name].update(style_info)
else:
# 基本的にはこのルートは通らないはずだが、念のため
final_styles[original_style_name] = style_info
# 例外: "Neutral" のような名前キーが直接指定されている場合も考慮
elif style_id_str in final_styles:
final_styles[style_id_str].update(style_info)
except Exception as e:
if ENABLE_LOGGING:
print(f"Warning: Failed to load or parse {custom_style_config_path}: {e}")
# --- ステップ3: デフォルトスタイルの保証 (変更なし) ---
if not final_styles or DEFAULT_STYLE not in final_styles:
final_styles[DEFAULT_STYLE] = {"display_name": DEFAULT_STYLE, "weight": DEFAULT_STYLE_WEIGHT}
return final_styles
def process_single_synthesis_webui(
model_holder_ref: TTSModelHolder, current_model_name: str, current_model_file_path_str: str,
text_to_synthesize: str, language_arg: str, speaker_name_arg: Optional[str],
style_arg: str, style_display_name_arg: str, style_weight_arg: float,
seed_arg: int,
reference_audio_path_arg: Optional[str],
length_scale_arg: float, noise_scale_arg: float, noise_scale_w_arg: float, sdp_ratio_arg: float,
pitch_scale_arg: float, intonation_scale_arg: float, use_assist_text_arg: bool,
assist_text_arg: Optional[str], assist_text_weight_arg: float
) -> Tuple[bool, List[str], Optional[Tuple[int, np.ndarray]]]:
current_model_file_path = Path(current_model_file_path_str)
log_messages = []
set_random_seed(seed_arg)
if seed_arg >= 0 and ENABLE_LOGGING:
log_messages.append(f"乱数シードを {seed_arg} に固定しました。")
try:
model_holder_ref.get_model(current_model_name, current_model_file_path)
if model_holder_ref.current_model is None:
msg = f"モデルのロード失敗: {current_model_name} (ファイル: {current_model_file_path.name})"
log_messages.append(f"❌ [エラー] {msg}"); return False, log_messages, None
if ENABLE_LOGGING:
log_messages.append(f"使用モデル: {current_model_name} (ファイル: {current_model_file_path.name})")
except Exception as e:
msg = f"モデルロードエラー '{current_model_name}' (ファイル: {current_model_file_path.name}): {e}"
log_messages.append(f"❌ [エラー] {msg}"); return False, log_messages, None
speaker_id = 0
if model_holder_ref.current_model and hasattr(model_holder_ref.current_model, 'spk2id'):
model_spk2id = model_holder_ref.current_model.spk2id
if speaker_name_arg and speaker_name_arg in model_spk2id:
speaker_id = model_spk2id[speaker_name_arg]
elif model_spk2id:
speaker_id = list(model_spk2id.values())[0]
if ENABLE_LOGGING:
log_messages.append(f"音声合成中...")
try:
length_for_model = 1.0 / length_scale_arg if length_scale_arg != 0 else 1.0
sr, audio_data = model_holder_ref.current_model.infer(
text=text_to_synthesize, language=language_arg,
reference_audio_path=reference_audio_path_arg,
sdp_ratio=sdp_ratio_arg, noise=noise_scale_arg, noise_w=noise_scale_w_arg,
length=length_for_model,
assist_text=assist_text_arg if use_assist_text_arg else None,
assist_text_weight=assist_text_weight_arg, style=style_arg, style_weight=style_weight_arg,
speaker_id=speaker_id, pitch_scale=pitch_scale_arg, intonation_scale=intonation_scale_arg,
)
except (InvalidToneError, ValueError) as e:
msg = f"合成エラー: {e}"; log_messages.append(f"❌ [エラー] {msg}"); return False, log_messages, None
except Exception as e:
msg = f"予期せぬエラー: {e}"; log_messages.append(f"❌ [エラー] {msg}"); return False, log_messages, None
return True, log_messages, (sr, audio_data)
def create_synthesis_app(model_holder: TTSModelHolder) -> gr.Blocks:
MERGER_CACHE_PATH = Path("/tmp/sbv2_merger_cache")
# 文字数制限の定数を定義
MAX_TEXT_LENGTH = 35
is_merger_cache_available = False
if sys.platform != "win32":
try:
MERGER_CACHE_PATH.mkdir(parents=True, exist_ok=True)
is_merger_cache_available = MERGER_CACHE_PATH.is_dir()
if is_merger_cache_available:
if ENABLE_LOGGING:
print(f"Merger cache directory is available at: {MERGER_CACHE_PATH}")
else:
if ENABLE_LOGGING:
print(f"Warning: Merger cache path {MERGER_CACHE_PATH} exists but is not a directory.")
except OSError as e:
if ENABLE_LOGGING:
print(f"Warning: Could not create or access merger cache directory {MERGER_CACHE_PATH}: {e}")
NORMAL_MODE_MODEL_ORDER = [
"mikeneko",
"MyModel1",
]
FN_MODE_MODEL_ORDER = [f"FN{i}" for i in range(1, 11)] # FN1, FN2, ... FN10 の順
custom_css = """
.audio-output-row { display: flex !important; flex-wrap: wrap !important; gap: 10px !important; }
.audio-item-column { flex-grow: 0 !important; flex-shrink: 0 !important; width: var(--audio-width, 250px) !important; background-color: #f8f9fa; padding: 8px; border-radius: 8px; border: 1px solid #dee2e6; }
.dummy-column { border: none !important; background: none !important; padding: 0 !important; margin: 0 !important; }
.compact-audio .wrap.svelte-1w9aqb2 { min-height: 40px !important; }
.compact-audio audio.svelte-1w9aqb2 { height: 40px !important; }
.workbench-item-container { border-bottom: 1px solid #dee2e6; padding: 8px 5px; }
.workbench-top-row { align-items: flex-start !important; }
.workbench-buttons-row { justify-content: space-between !important; }
.text-center { text-align: center; }
"""
with gr.Blocks(css=custom_css) as app:
MAX_AUDIO_OUTPUTS = 4
ITEMS_PER_ROW = 4
MAX_WORKBENCH_ITEMS = 8
all_styles_data_state = gr.State({})
# 生成された音声ごとのパラメータを保持するStateを追加
synthesized_wav_files_state = gr.State([])
synthesized_model_names_state = gr.State([])
synthesized_style_names_state = gr.State([])
synthesized_style_weights_state = gr.State([])
workbench_state = gr.State([])
merged_preview_state = gr.State({})
def update_workbench_ui(workbench_list: List[Dict]) -> Tuple:
updates = []
for i in range(MAX_WORKBENCH_ITEMS):
if i < len(workbench_list):
item = workbench_list[i]
is_merged = item.get("is_merged", False)
if is_merged:
info_text = (
f"**Text:** {item['text']}\n\n"
f"**Models:** {item['model']}"
)
else:
info_text = (
f"**Text:** {item['text']}\n\n"
f"**Model:** {item['model']}\n\n"
f"**Style:** {item['style']} (Weight: {item['style_weight']:.2f})"
)
wav_path = item['audio_path']
mp3_path = str(Path(wav_path).with_suffix('.mp3'))
playback_path = mp3_path if Path(mp3_path).exists() else wav_path
updates.extend([
gr.update(visible=True),
gr.update(value=f"**{i+1}**"),
gr.update(value=playback_path),
gr.update(value=wav_path, visible=True),
gr.update(value=info_text)
])
else:
updates.extend([
gr.update(visible=False),
gr.update(value=""),
gr.update(value=None),
gr.update(value=None, visible=False),
gr.update(value="")
])
return tuple(updates)
with gr.Tabs():
with gr.Tab("読み上げ"):
gr.Markdown("## 読み上げ")
with gr.Row():
with gr.Column(scale=3):
text_input = gr.TextArea(
label="読み上げたいテキスト", lines=3, placeholder="ここにテキストを入力\n[この部分だけ] 発音を変えることができます。",
value="こんにちは、今日もいい天気ですね。", interactive=True,
info=f"最大{MAX_TEXT_LENGTH}文字まで。"
)
generate_button = gr.Button("音声合成実行", variant="primary", interactive=True)
with gr.Column(visible=False) as audio_output_area:
gr.Markdown("#### 合成結果")
with gr.Row(elem_classes="audio-output-row"):
audio_item_columns = []
audio_outputs = []
download_buttons = []
to_workbench_buttons = []
synthesized_text_states = []
dummy_audio_item_columns = []
for i in range(MAX_AUDIO_OUTPUTS):
synthesized_text_states.append(gr.State(""))
with gr.Column(visible=False, elem_classes="audio-item-column") as audio_col:
audio_outputs.append(gr.Audio(
label=f"結果 {i+1}", elem_classes="compact-audio",
type="filepath", interactive=False
))
download_buttons.append(gr.DownloadButton("ダウンロード", scale=2, visible=False))
with gr.Row():
to_workbench_buttons.append(gr.Button("🛠️ キープ", scale=2))
audio_item_columns.append(audio_col)
for i in range(ITEMS_PER_ROW - 1):
with gr.Column(visible=False, elem_classes="audio-item-column dummy-column") as dummy_col:
pass
dummy_audio_item_columns.append(dummy_col)
with gr.Accordion("ステータス", open=True):
status_textbox = gr.Textbox(interactive=False, lines=1, max_lines=4, autoscroll=True, show_label=False, placeholder="ここにログが表示されます...")
with gr.Column(scale=1):
with gr.Row():
use_fn_model_mode_checkbox = gr.Checkbox(label="FNモデル", value=False, interactive=True, scale=2)
use_symlink_mode_checkbox = gr.Checkbox(label="融☆合モデル", value=False, interactive=True, scale=2, visible=is_merger_cache_available)
refresh_model_list_button = gr.Button("再読込", scale=1)
selected_model_dropdown = gr.Dropdown(label="話者", choices=[], value=None, interactive=True)
current_styles_dropdown = gr.Dropdown(label="スタイル", choices=[], type="value", interactive=True)
style_weight_for_synth_slider = gr.Slider(label="スタイル強度", minimum=0.0, maximum=20.0, value=DEFAULT_STYLE_WEIGHT, step=0.1, info="自動的に推奨強度に設定されます", interactive=True)
batch_count_slider = gr.Slider(label="生成数", value=1, minimum=1, maximum=MAX_AUDIO_OUTPUTS, step=1, interactive=True)
with gr.Accordion("合成パラメータ", open=False):
length_scale_slider = gr.Slider(label="話速", minimum=0.5, maximum=2.0, value=DEFAULT_LENGTH, step=0.05, interactive=True)
pitch_scale_slider = gr.Slider(label="音高", minimum=0.5, maximum=2.0, value=1.0, step=0.01, interactive=True)
intonation_scale_slider = gr.Slider(label="抑揚", minimum=0.0, maximum=2.0, value=1.0, step=0.1, interactive=True)
with gr.Accordion("その他", open=False):
noise_scale_slider = gr.Slider(label="ノイズ強度", minimum=0.0, maximum=2.0, value=DEFAULT_NOISE, step=0.05, interactive=True)
noise_scale_w_slider = gr.Slider(label="持続時間ノイズ強度", minimum=0.0, maximum=2.0, value=DEFAULT_NOISEW, step=0.05, interactive=True)
sdp_ratio_slider = gr.Slider(label="SDP比率", minimum=0.0, maximum=1.0, value=DEFAULT_SDP_RATIO, step=0.05, interactive=True)
with gr.Accordion("設定", open=False):
language_dropdown = gr.Dropdown(label="言語", choices=Languages.value, value="JP", interactive=True)
seed_input = gr.Number(label="Seed", value=-1, info="再現性確保用。-1でランダム", precision=0, interactive=True)
player_width_slider = gr.Slider(label="プレイヤーの横幅 (px)", minimum=150, maximum=800, value=250, step=10, interactive=True)
speaker_name_textbox = gr.Textbox(label="話者名 (モデル依存、空欄で自動)", interactive=True)
reference_audio_input = gr.Audio(label="参照音声 (スタイル指定を上書き)", type="filepath", interactive=True)
use_assist_text_checkbox = gr.Checkbox(label="アシストテキスト使用", value=False, interactive=True)
assist_text_textbox = gr.Textbox(label="アシストテキスト", lines=2, visible=False, interactive=True)
assist_text_weight_slider = gr.Slider(label="アシスト強度", minimum=0.0, maximum=1.0, value=DEFAULT_ASSIST_TEXT_WEIGHT, step=0.05, visible=False, interactive=True)
js_injector_html = gr.HTML(visible=False)
with gr.Accordion("発音ガチャ設定", open=False):
gr.Markdown("文章を`[]`で囲むと、囲んだ範囲の発音がランダムに変化します<br>使用例 → こんにちは、[今日もいい天気ですね]。")
random_text_mode_slider = gr.Slider(label="分割の単位", minimum=1, maximum=4, value=1, step=1, info="1:形態素, 2:チャンク, 3:文節, 4:節", interactive=True)
random_text_ratio_textbox = gr.Textbox(label="カタカナ化の割合", value="0.2, 0.4, 0.6, 0.8, 1", info="カンマ区切りで複数指定可。指定値からランダムに1つ使用。", interactive=True)
with gr.Tab("キープ"):
gr.Markdown("## キープ\n読み上げタブで生成した音声をここにストックし、結合や保存ができます。最大8個まで保持できます。")
workbench_items = []
all_workbench_ui_components = []
with gr.Row(variant="panel"):
with gr.Column(scale=3):
with gr.Row():
left_workbench_col = gr.Column(scale=1)
right_workbench_col = gr.Column(scale=1)
with gr.Column(scale=1):
with gr.Blocks():
# 結合UIを更新し、音量調整スライダーを倍率に変更しレイアウトを調整
gr.Markdown("#### 音声の結合")
with gr.Row():
with gr.Column(scale=1, min_width=160):
first_audio_num_input = gr.Number(label="前半", value=1, minimum=1, step=1, precision=0, interactive=True)
volume_first_slider = gr.Slider(label="音量(倍率)", minimum=0.0, maximum=3.0, value=1.0, step=0.05, interactive=True)
with gr.Column(scale=1, min_width=160):
second_audio_num_input = gr.Number(label="後半", value=2, minimum=1, step=1, precision=0, interactive=True)
volume_second_slider = gr.Slider(label="音量(倍率)", minimum=0.0, maximum=3.0, value=1.0, step=0.05, interactive=True)
merge_pause_input = gr.Number(label="間のポーズ(ms)", value=DEFAULT_WORKBENCH_PAUSE, minimum=-10000, step=10, info="マイナスで重ね合わせ(オーバーレイ)", interactive=True)
with gr.Row():
merge_preview_button = gr.Button("1.結合&プレビュー", variant="primary")
add_merged_to_workbench_button = gr.Button("2.結合した音声をキープ", variant="primary")
delete_originals_checkbox = gr.Checkbox(label="結合時に自動で元ファイルを削除", value=False, interactive=True)
preview_audio_player = gr.Audio(label="結合結果プレビュー", interactive=False, type="filepath")
preview_download_button = gr.DownloadButton("プレビューをダウンロード", visible=False)
ITEMS_PER_COLUMN = 4
for i in range(MAX_WORKBENCH_ITEMS):
parent_column = left_workbench_col if i < ITEMS_PER_COLUMN else right_workbench_col
with parent_column:
with gr.Column(visible=False, elem_classes="workbench-item-container") as item_container:
with gr.Row(elem_classes="workbench-top-row"):
with gr.Column(scale=1, min_width=40):
item_num_display = gr.Markdown(f"**{i+1}**", elem_classes=["text-center"])
with gr.Column(scale=4, min_width=160):
audio = gr.Audio(label=f"音声 {i+1}", interactive=False, type="filepath")
with gr.Column(scale=5):
info = gr.Markdown()
with gr.Row(elem_classes="workbench-buttons-row"):
download = gr.DownloadButton("ダウンロード", visible=False)
delete_btn = gr.Button("削除", variant="primary")
workbench_items.append({"container": item_container, "item_num_display": item_num_display, "audio": audio, "download": download, "info": info, "delete_btn": delete_btn})
for item in workbench_items:
all_workbench_ui_components.extend([item["container"], item["item_num_display"], item["audio"], item["download"], item["info"]])
# --- UIイベントハンドラ関数 (action_refresh_model_list を修正) ---
def load_styles_for_ui(selected_model_name: Optional[str]):
if not selected_model_name: return gr.update(choices=[], value=None), gr.update(value=DEFAULT_STYLE_WEIGHT), {}
model_path = assets_root_path / selected_model_name
styles_map = load_styles_from_model_folder(model_path)
display_names = [data.get("display_name", key) for key, data in styles_map.items()]
default_display_name, default_weight = None, DEFAULT_STYLE_WEIGHT
if DEFAULT_STYLE in styles_map:
default_display_name = styles_map[DEFAULT_STYLE].get("display_name", DEFAULT_STYLE)
default_weight = styles_map[DEFAULT_STYLE].get("weight", DEFAULT_STYLE_WEIGHT)
elif display_names:
first_key = next(iter(styles_map))
default_display_name = styles_map[first_key].get("display_name", first_key)
default_weight = styles_map[first_key].get("weight", DEFAULT_STYLE_WEIGHT)
return gr.update(choices=display_names, value=default_display_name), gr.update(value=default_weight), styles_map
def action_refresh_model_list(use_fn_model_mode: bool, use_symlink_mode: bool):
"""モデルリストを再読み込みし、UIとバックエンドの状態を同期させる。"""
MERGER_CACHE_PATH = Path("/tmp/sbv2_merger_cache")
if use_fn_model_mode:
use_symlink_mode = False
if assets_root_path.exists():
for item in assets_root_path.iterdir():
if item.is_symlink():
try:
item.unlink()
except OSError as e:
if ENABLE_LOGGING:
print(f"Failed to remove symlink {item}: {e}")
if use_symlink_mode:
if MERGER_CACHE_PATH.exists() and MERGER_CACHE_PATH.is_dir():
for item in MERGER_CACHE_PATH.iterdir():
if item.is_dir() and item.name != 'whisper':
target_link = assets_root_path / item.name
if not target_link.exists():
try:
os.symlink(item, target_link)
except OSError as e:
if ENABLE_LOGGING:
print(f"Warning: Could not create symlink for {item.name}: {e}")
else:
if ENABLE_LOGGING:
print(f"Warning: Symlink mode is on, but {MERGER_CACHE_PATH} does not exist or is not a directory.")
model_holder.refresh()
fn_model_pattern = re.compile(r'^FN([1-9]|10)$')
current_available_models = model_holder.model_names
final_choices = []
final_value_for_style_load = None
if use_fn_model_mode:
ui_model_list = [name for name in current_available_models if fn_model_pattern.match(name)]
final_choices = sort_models_by_custom_order(ui_model_list, FN_MODE_MODEL_ORDER)
elif use_symlink_mode:
ui_model_list_names = [p.name for p in assets_root_path.iterdir() if p.is_symlink()]
final_choices = format_and_sort_model_names(ui_model_list_names)
else:
ui_model_list = [
name for name in current_available_models
if name != 'whisper'
and not fn_model_pattern.match(name)
and not (assets_root_path / name).is_symlink()
]
final_choices = sort_models_by_custom_order(ui_model_list, NORMAL_MODE_MODEL_ORDER)
if not final_choices:
# 選択肢が空の場合、エラーを防ぐためにダミー項目を設定し、ドロップダウンを無効化
model_dropdown_update = gr.update(
choices=["(利用可能なモデルがありません)"],
value="(利用可能なモデルがありません)",
interactive=False
)
final_value_for_style_load = None
else:
# 選択肢がある場合、通常通り設定
is_tuple_choices = isinstance(final_choices[0], tuple)
actual_value = final_choices[0][1] if is_tuple_choices else final_choices[0]
model_dropdown_update = gr.update(
choices=final_choices,
value=actual_value,
interactive=True
)
final_value_for_style_load = actual_value
style_dropdown_update, style_weight_update, styles_data_state_update = load_styles_for_ui(final_value_for_style_load)
return model_dropdown_update, style_dropdown_update, style_weight_update, styles_data_state_update
def on_model_select_change(selected_model_name: Optional[str]):
style_dropdown_update, style_weight_update, styles_data_state_update = load_styles_for_ui(selected_model_name)
return style_dropdown_update, style_weight_update, styles_data_state_update
def on_style_dropdown_select(selected_display_name: Optional[str], styles_data: Dict[str, Any]):
if not selected_display_name or not styles_data: return gr.update(value=DEFAULT_STYLE_WEIGHT)
for _, data in styles_data.items():
if data.get("display_name") == selected_display_name:
return gr.update(value=data.get("weight", DEFAULT_STYLE_WEIGHT))
return gr.update(value=DEFAULT_STYLE_WEIGHT)
def action_run_synthesis(
model_name: Optional[str],
style_display_name: Optional[str], style_weight_for_synth: float,
text: str, batch_count: int,
lang: str, seed: int, speaker: str, ref_audio: Optional[str],
length: float, pitch: float, intonation:float,
noise:float, noise_w:float, sdp_r:float,
use_assist:bool, assist_text:Optional[str], assist_w:float,
random_text_mode: int, random_text_ratio_str: str,
styles_data: Dict[str, Any],
progress=gr.Progress(track_tqdm=True)
):
error_outputs = []
error_outputs.append("エラーが発生しました。") # status_textbox
error_outputs.append(gr.update(visible=False)) # audio_output_area
for _ in range(MAX_AUDIO_OUTPUTS):
error_outputs.extend([
gr.update(visible=False),
gr.update(value=None),
gr.update(value=None, visible=False),
])
for _ in range(ITEMS_PER_ROW - 1):
error_outputs.append(gr.update(visible=False))
for _ in range(MAX_AUDIO_OUTPUTS):
error_outputs.append("")
# エラー時に返す空リストを、追加したStateの分だけ増やす
error_outputs.append([]) # for synthesized_wav_files_state
error_outputs.append([]) # for synthesized_model_names_state
error_outputs.append([]) # for synthesized_style_names_state
error_outputs.append([]) # for synthesized_style_weights_state
if re.search(INVALID_FILENAME_CHARS_PATTERN, text):
found_chars = "".join(sorted(list(set(re.findall(INVALID_FILENAME_CHARS_PATTERN, text)))))
error_outputs[0] = f"❌ [エラー] テキストに使用できない文字が含まれています: {found_chars}"
return tuple(error_outputs)
if not model_name or model_name == "(利用可能なモデルがありません)": # ダミー項目もチェック
error_outputs[0] = "❌ [エラー] モデルが選択されていません。"
return tuple(error_outputs)
if not text.strip():
error_outputs[0] = "❌ [エラー] テキストが入力されていません。"
return tuple(error_outputs)
if len(text) > MAX_TEXT_LENGTH:
error_outputs[0] = f"❌ [エラー] テキストが長すぎます。{MAX_TEXT_LENGTH}文字以下にしてください。(現在: {len(text)}文字)"
return tuple(error_outputs)
if not style_display_name:
error_outputs[0] = "❌ [エラー] スタイルが選択されていません。"
return tuple(error_outputs)
internal_style_key = None
for key, data in styles_data.items():
if data.get("display_name") == style_display_name: internal_style_key = key; break
if not internal_style_key:
error_outputs[0] = f"❌ [エラー] スタイル '{style_display_name}' の内部キーが見つかりません。"
return tuple(error_outputs)
all_logs = []
model_path = assets_root_path / model_name
files = find_safetensors_files_webui(str(model_path))
if not files:
error_outputs[0] = f"❌ [エラー] モデルフォルダ '{model_name}' に .safetensors ファイルが見つかりません。"
return tuple(error_outputs)
actual_model_file_to_load = str(model_path / files[0])
if ENABLE_LOGGING:
all_logs.append(f"[自動選択] 使用モデルファイル: {files[0]}")
batch_count = int(batch_count)
if batch_count <= 0: batch_count = 1
# 生成パラメータを保持するリストを初期化
final_wav_paths = []
final_mp3_paths = []
generated_texts = []
generated_model_names = []
generated_style_names = []
generated_style_weights = []
def save_audio_files(audio_segment: AudioSegment, base_filename: str) -> Optional[Tuple[str, str]]:
try:
temp_dir = Path(tempfile.gettempdir())
output_path_wav = temp_dir / f"{base_filename}.wav"
count = 1
while output_path_wav.exists():
output_path_wav = temp_dir / f"{base_filename}-{count}.wav"
count += 1
output_path_mp3 = output_path_wav.with_suffix('.mp3')
audio_segment.export(output_path_wav, format="wav")
audio_segment.export(output_path_mp3, format="mp3", bitrate="192k")
return str(output_path_wav), str(output_path_mp3)
except Exception as e:
all_logs.append(f"❌ [エラー] 一時音声ファイルの保存に失敗: {e}")
return None
if ENABLE_LOGGING:
all_logs.append("--- 標準モード ---")
start_seed = int(seed)
for i in progress.tqdm(range(batch_count), desc=f"{batch_count}件の音声を生成中"):
current_seed = start_seed + i if start_seed >= 0 else -1
# 合成用のテキストを準備
text_to_synthesize = text
bracket_pattern = re.compile(r'\[([^\[\]]+)\]')
# テキストに [] が含まれている場合、その部分だけを発音ガチャのロジックで変換
if bracket_pattern.search(text):
if ENABLE_LOGGING:
all_logs.append(f" ┠ 発音ガチャ機能を検出: `[]` 内を変換します。")
try:
ratio_list = [float(x.strip()) for x in random_text_ratio_str.split(',') if x.strip()]
if not ratio_list: ratio_list = [0.5]
except ValueError:
ratio_list = [0.5]
internal_mode = int(random_text_mode) + 1
parts = bracket_pattern.split(text)
final_text_parts = []
log_parts = []
for j, part in enumerate(parts):
# jが奇数番目の要素が[]の中身
if j % 2 == 1:
original_part = part
transformed_blocks = generate_one_variation(original_part, internal_mode, random.choice(ratio_list))
transformed_part = "".join(transformed_blocks)
final_text_parts.append(transformed_part)
log_parts.append(f"「{original_part}」->「{transformed_part}」")
else:
final_text_parts.append(part)
text_to_synthesize = "".join(final_text_parts)
if ENABLE_LOGGING and log_parts:
all_logs.append(f" ┠ 変換ログ: {', '.join(log_parts)}")
if ENABLE_LOGGING:
all_logs.append(f"--- 生成 {i+1}/{batch_count} (Seed: {current_seed if current_seed >= 0 else 'Random'}) ---")
if text_to_synthesize != text:
all_logs.append(f" ┠ 元テキスト: \"{text[:50]}{'...' if len(text)>50 else ''}\"")
all_logs.append(f" ┗ 合成テキスト: \"{text_to_synthesize[:50]}{'...' if len(text_to_synthesize)>50 else ''}\"")
else:
all_logs.append(f" ┗ 合成テキスト: \"{text_to_synthesize[:50]}{'...' if len(text_to_synthesize)>50 else ''}\"")
success, logs, audio_tuple = process_single_synthesis_webui(
model_holder, model_name, actual_model_file_to_load,
text_to_synthesize, # 変換後のテキストを使用
lang, speaker or None, internal_style_key, style_display_name, style_weight_for_synth,
current_seed, ref_audio or None, length, noise, noise_w, sdp_r, pitch, intonation,
use_assist, assist_text or None, assist_w
)
all_logs.extend([f" {log}" for log in logs])
if success and audio_tuple:
sr, audio_data = audio_tuple
audio_segment = AudioSegment(data=audio_data.tobytes(), sample_width=audio_data.dtype.itemsize, frame_rate=sr, channels=1)
sanitized_model_name = sanitize_filename(model_name)
sanitized_style_name = sanitize_filename(style_display_name)
style_weight_str = f"{style_weight_for_synth:.1f}".replace('.', '.')
# ファイル名は変換前の元のテキストを使用
text_for_filename = sanitize_filename(text[:30]) if text else "no-text"
base_filename = f"{sanitized_model_name}-{sanitized_style_name}-{style_weight_str}-{text_for_filename}"
saved_paths = save_audio_files(audio_segment, base_filename)
# 音声保存成功時に、生成パラメータをリストに記録
if saved_paths:
final_wav_paths.append(saved_paths[0])
final_mp3_paths.append(saved_paths[1])
generated_texts.append(text) # ここも元のテキストを保存
generated_model_names.append(model_name)
generated_style_names.append(style_display_name)
generated_style_weights.append(style_weight_for_synth)
num_generated = len(final_wav_paths)
if num_generated > 0:
all_logs.append(f"✅ {num_generated}件の音声合成が完了しました。")
else:
all_logs.append("ℹ️ 音声は生成されませんでした。")
final_outputs = []
if ENABLE_LOGGING:
status_message = "\n".join(all_logs)
else:
essential_logs = [log for log in all_logs if any(prefix in log for prefix in ["✅", "❌", "⚠️", "ℹ️"])]
status_message = "\n".join(essential_logs)
final_outputs.append(status_message)
num_generated = len(final_wav_paths)
final_outputs.append(gr.update(visible=num_generated > 0))
for i in range(MAX_AUDIO_OUTPUTS):
is_visible = i < num_generated
mp3_val = final_mp3_paths[i] if is_visible else None
wav_val = final_wav_paths[i] if is_visible else None
final_outputs.append(gr.update(visible=is_visible))
final_outputs.append(gr.update(value=mp3_val))
final_outputs.append(gr.update(value=wav_val, visible=is_visible))
num_dummies_needed = (ITEMS_PER_ROW - (num_generated % ITEMS_PER_ROW)) % ITEMS_PER_ROW if num_generated > 0 else 0
for i in range(ITEMS_PER_ROW - 1):
final_outputs.append(gr.update(visible=i < num_dummies_needed))
for i in range(MAX_AUDIO_OUTPUTS):
text_val = generated_texts[i] if i < num_generated else ""
final_outputs.append(text_val)
# 関数の戻り値に、生成パラメータのリストを追加
final_outputs.append(final_wav_paths)
final_outputs.append(generated_model_names)
final_outputs.append(generated_style_names)
final_outputs.append(generated_style_weights)
return tuple(final_outputs)
def add_to_workbench(
current_status: str,
current_workbench_list: List[Dict],
wav_audio_path: Optional[str],
text: str, model: str, style_display_name: str, style_weight: float
) -> Tuple:
log_messages = []
safe_workbench_list = current_workbench_list or []
if not wav_audio_path or not Path(wav_audio_path).exists():
log_messages.append("⚠️ [キープ追加エラー] 追加する音声ファイル(WAV)が見つかりません。")
final_status = "\n".join(log_messages) if not ENABLE_LOGGING else (current_status + "\n" + "\n".join(log_messages)).strip()
return (final_status, safe_workbench_list) + update_workbench_ui(safe_workbench_list)
if any(item['audio_path'] == wav_audio_path for item in safe_workbench_list):
log_messages.append("ℹ️ この音声はすでにキープに存在します。")
final_status = "\n".join(log_messages) if not ENABLE_LOGGING else (current_status + "\n" + "\n".join(log_messages)).strip()
return (final_status, safe_workbench_list) + update_workbench_ui(safe_workbench_list)
display_model_name = model
parsed_result = parse_merged_model_name(model)
if parsed_result: display_model_name, _ = parsed_result
new_item = {"audio_path": wav_audio_path, "text": text, "model": display_model_name, "original_models": [model], "style": style_display_name, "style_weight": style_weight, "timestamp": datetime.datetime.now(JST).isoformat(), "is_merged": False}
updated_list = safe_workbench_list + [new_item]
if len(updated_list) > MAX_WORKBENCH_ITEMS:
item_to_remove = updated_list.pop(0)
try:
path_to_delete_wav = Path(item_to_remove['audio_path'])
path_to_delete_mp3 = path_to_delete_wav.with_suffix('.mp3')
if path_to_delete_wav.exists() and str(path_to_delete_wav.parent) == tempfile.gettempdir(): path_to_delete_wav.unlink()
if path_to_delete_mp3.exists() and str(path_to_delete_mp3.parent) == tempfile.gettempdir(): path_to_delete_mp3.unlink()
except Exception as e:
if ENABLE_LOGGING:
print(f"Warning: Failed to delete old workbench audio file: {e}")
log_messages.append(f"ℹ️ キープのアイテムが最大数({MAX_WORKBENCH_ITEMS})に達したため、一番古いアイテムを削除しました。")
ui_updates = update_workbench_ui(updated_list)
log_messages.append("✅ キープに音声を追加しました。")
if ENABLE_LOGGING:
final_status = (current_status + "\n" + "\n".join(log_messages)).strip()
else:
essential_logs = [log for log in log_messages if any(prefix in log for prefix in ["✅", "❌", "⚠️", "ℹ️"])]
final_status = "\n".join(essential_logs).strip()
return (final_status, updated_list) + ui_updates
def remove_from_workbench(current_status: str, index_to_remove: int, current_workbench_list: List[Dict]) -> Tuple:
log_messages = []
safe_workbench_list = current_workbench_list or []
if not (0 <= index_to_remove < len(safe_workbench_list)):
final_status = current_status if ENABLE_LOGGING else ""
return (final_status, safe_workbench_list) + update_workbench_ui(safe_workbench_list)
item_to_remove = safe_workbench_list[index_to_remove]
try:
path_to_delete_wav = Path(item_to_remove['audio_path'])
path_to_delete_mp3 = path_to_delete_wav.with_suffix('.mp3')
if path_to_delete_wav.exists() and str(path_to_delete_wav.parent) == tempfile.gettempdir():
path_to_delete_wav.unlink()
if path_to_delete_mp3.exists():
path_to_delete_mp3.unlink()
log_messages.append(f"✅ キープからアイテム #{index_to_remove + 1} を削除し、一時ファイル(WAV/MP3)をクリーンアップしました。")
elif path_to_delete_wav.exists():
log_messages.append(f"✅ キープからアイテム #{index_to_remove + 1} を削除しました。(ファイルは保持: {path_to_delete_wav.name})")
else:
log_messages.append(f"✅ キープからアイテム #{index_to_remove + 1} を削除しました。(関連ファイルなし)")
except Exception as e: log_messages.append(f"⚠️ キープのアイテム #{index_to_remove + 1} のファイル削除中にエラー: {e}")
updated_list = [item for i, item in enumerate(safe_workbench_list) if i != index_to_remove]
ui_updates = update_workbench_ui(updated_list)
if ENABLE_LOGGING:
final_status = (current_status + "\n" + "\n".join(log_messages)).strip()
else:
essential_logs = [log for log in log_messages if any(prefix in log for prefix in ["✅", "❌", "⚠️", "ℹ️"])]
final_status = "\n".join(essential_logs).strip()
return (final_status, updated_list) + ui_updates
def action_merge_preview(
current_status: str,
first_audio_num: int, volume1_ratio: float,
second_audio_num: int, volume2_ratio: float,
pause_ms: int, workbench_list: List[Dict],
progress=gr.Progress(track_tqdm=True)
):
log_messages = []
def ratio_to_db(ratio: float) -> float:
"""倍率をdBに変換する。0以下の場合は-infを返す。"""
if ratio <= 0:
return -float('inf') # pydubでは-infで無音になる
return 20 * math.log10(ratio)
def create_error_return():
if ENABLE_LOGGING:
final_status = (current_status + "\n" + "\n".join(log_messages)).strip()
else:
essential_logs = [log for log in log_messages if any(prefix in log for prefix in ["✅", "❌", "⚠️", "ℹ️"])]
final_status = "\n".join(essential_logs).strip()
return (final_status, None, gr.update(value=None, visible=False), {})
if not workbench_list:
log_messages.append("⚠️ [結合プレビュー警告] キープに音声がありません。")
return create_error_return()
idx1, idx2 = int(first_audio_num) - 1, int(second_audio_num) - 1
if not (0 <= idx1 < len(workbench_list) and 0 <= idx2 < len(workbench_list)):
log_messages.append(f"⚠️ [結合プレビュー警告] 指定された番号(#{first_audio_num}, #{second_audio_num})の音声が見つかりません。")
return create_error_return()
item1, item2 = workbench_list[idx1], workbench_list[idx2]
audio_path1, audio_path2 = item1.get("audio_path"), item2.get("audio_path")
if not audio_path1 or not Path(audio_path1).exists() or not audio_path2 or not Path(audio_path2).exists():
log_messages.append("❌ [結合プレビューエラー] 音声ファイル(WAV)が見つかりません。ファイルが削除された可能性があります。")
return create_error_return()
progress(0, desc="結合準備中...")
try:
# pydubでファイルを読み込み、指定された倍率で音量を調整
segment1 = AudioSegment.from_file(audio_path1)
segment1 = segment1 + ratio_to_db(float(volume1_ratio))
segment2 = AudioSegment.from_file(audio_path2)
segment2 = segment2 + ratio_to_db(float(volume2_ratio))
pause_duration = int(pause_ms)
if pause_duration >= 0:
combined_audio = segment1 + AudioSegment.silent(duration=pause_duration) + segment2
# ログに音量情報を倍率で表示
if ENABLE_LOGGING: log_messages.append(f"音声 #{first_audio_num}({volume1_ratio:.2f}倍) と #{second_audio_num}({volume2_ratio:.2f}倍) を {pause_duration}ms のポーズを挟んで結合しました。")
else:
overlap_duration = abs(pause_duration)
max_possible_overlap = min(len(segment1), len(segment2))
if overlap_duration > max_possible_overlap:
log_messages.append(f"ℹ️ オーバーラップ長({overlap_duration}ms)が可能な最大値({max_possible_overlap}ms)を超えるため、自動的に調整されました。")
overlap_duration = max_possible_overlap
combined_audio = AudioSegment.silent(duration=len(segment1) + len(segment2) - overlap_duration)
combined_audio = combined_audio.overlay(segment1, position=0).overlay(segment2, position=len(segment1) - overlap_duration)
# ログに音量情報を倍率で表示
if ENABLE_LOGGING: log_messages.append(f"音声 #{first_audio_num}({volume1_ratio:.2f}倍) と #{second_audio_num}({volume2_ratio:.2f}倍) を {overlap_duration}ms 重ねて結合しました。")
progress(1, desc="結合完了")
except Exception as e:
log_messages.append(f"❌ [結合プレビューエラー] 音声の結合または音量調整中にエラーが発生しました: {e}")
return create_error_return()
# --- 新しいファイル名生成ロジック ---
original_models1 = item1.get('original_models', [])
original_models2 = item2.get('original_models', [])
all_original_models_set = set(original_models1 + original_models2)
sorted_original_models = sorted(list(all_original_models_set))
model_part = "_".join([sanitize_filename(name) for name in sorted_original_models])
text1, text2 = item1.get('text', ''), item2.get('text', '')
combined_text = f"{text1}_{text2}"
text_part = sanitize_filename(combined_text[:50])
base_filename = f"{model_part}-{text_part}" if model_part and text_part else f"merged_{uuid.uuid4().hex[:8]}"
temp_dir = Path(tempfile.gettempdir())
wav_temp_path = temp_dir / f"{base_filename}.wav"
count = 1
while wav_temp_path.exists():
wav_temp_path = temp_dir / f"{base_filename}-{count}.wav"
count += 1
mp3_temp_path = wav_temp_path.with_suffix('.mp3')
combined_audio.export(wav_temp_path, format="wav")
combined_audio.export(mp3_temp_path, format="mp3", bitrate="192k")
display_models1 = item1.get('model', '').split(' | ') if item1.get('model') else []
display_models2 = item2.get('model', '').split(' | ') if item2.get('model') else []
all_display_models = {m.strip() for m in display_models1 + display_models2 if m.strip()}
metadata = {
"text": f"{item1.get('text', '')} | {item2.get('text', '')}",
"display_models": sorted(list(all_display_models)),
"original_models": sorted_original_models,
"audio_path": str(wav_temp_path),
"timestamp": datetime.datetime.now(JST).isoformat()
}
log_messages.append("✅ 結合プレビューが生成されました。")
if ENABLE_LOGGING:
final_status = (current_status + "\n" + "\n".join(log_messages)).strip()
else:
essential_logs = [log for log in log_messages if any(prefix in log for prefix in ["✅", "❌", "⚠️", "ℹ️"])]
final_status = "\n".join(essential_logs).strip()
return final_status, str(mp3_temp_path), gr.update(value=str(wav_temp_path), visible=True), metadata
def action_add_merged_to_workbench(current_status: str, preview_data: Dict, current_workbench_list: List[Dict], delete_originals: bool, first_audio_num: int, second_audio_num: int) -> Tuple:
log_messages = []
safe_workbench_list = current_workbench_list or []
def create_error_return():
if ENABLE_LOGGING:
final_status = (current_status + "\n" + "\n".join(log_messages)).strip()
else:
essential_logs = [log for log in log_messages if any(prefix in log for prefix in ["✅", "❌", "⚠️", "ℹ️"])]
final_status = "\n".join(essential_logs).strip()
return (final_status, safe_workbench_list) + update_workbench_ui(safe_workbench_list)
if not preview_data or "audio_path" not in preview_data:
log_messages.append("⚠️ [キープ追加エラー] 追加する結合済み音声がありません。先にプレビューを生成してください。")
return create_error_return()
src_path = Path(preview_data["audio_path"])
if not src_path.exists():
log_messages.append("⚠️ [キープ追加エラー] 結合済み音声ファイルが見つかりません。")
return create_error_return()
new_merged_item = {"audio_path": str(src_path), "text": preview_data.get("text", "N/A"), "model": " | ".join(preview_data.get("display_models", [])), "original_models": preview_data.get("original_models", []), "style": "N/A", "style_weight": 0.0, "timestamp": preview_data.get("timestamp"), "is_merged": True}
final_workbench_list = []
if delete_originals:
idx1, idx2 = int(first_audio_num) - 1, int(second_audio_num) - 1
indices_to_remove = {idx1, idx2}
items_to_delete, remaining_list = [], []
for i, item in enumerate(safe_workbench_list):
if i in indices_to_remove: items_to_delete.append(item)
else: remaining_list.append(item)
for item_to_remove in items_to_delete:
try:
path_to_delete_wav = Path(item_to_remove['audio_path'])
path_to_delete_mp3 = path_to_delete_wav.with_suffix('.mp3')
if path_to_delete_wav.exists() and str(path_to_delete_wav.parent) == tempfile.gettempdir(): path_to_delete_wav.unlink()
if path_to_delete_mp3.exists() and str(path_to_delete_mp3.parent) == tempfile.gettempdir(): path_to_delete_mp3.unlink()
except Exception as e: log_messages.append(f"⚠️ 元の音声ファイル削除中にエラー: {e}")
final_workbench_list = [new_merged_item] + remaining_list
log_messages.append(f"✅ 結合音声をキープに追加し、元の音声(#{idx1+1}, #{idx2+1})を削除しました。")
else:
final_workbench_list = [new_merged_item] + safe_workbench_list
log_messages.append("✅ 結合済みの音声をキープの一番上に追加しました。")
if len(final_workbench_list) > MAX_WORKBENCH_ITEMS:
item_to_remove = final_workbench_list.pop(-1)
try:
path_to_delete_wav = Path(item_to_remove['audio_path'])
path_to_delete_mp3 = path_to_delete_wav.with_suffix('.mp3')
if path_to_delete_wav.exists() and str(path_to_delete_wav.parent) == tempfile.gettempdir(): path_to_delete_wav.unlink()
if path_to_delete_mp3.exists() and str(path_to_delete_mp3.parent) == tempfile.gettempdir(): path_to_delete_mp3.unlink()
except Exception as e:
if ENABLE_LOGGING:
print(f"Warning: Failed to delete old workbench audio file: {e}")
log_messages.append(f"ℹ️ キープが最大数({MAX_WORKBENCH_ITEMS})に達したため一番古いアイテムを削除しました。")
ui_updates = update_workbench_ui(final_workbench_list)
if ENABLE_LOGGING:
final_status = (current_status + "\n" + "\n".join(log_messages)).strip()
else:
essential_logs = [log for log in log_messages if any(prefix in log for prefix in ["✅", "❌", "⚠️", "ℹ️"])]
final_status = "\n".join(essential_logs).strip()
return (final_status, final_workbench_list) + ui_updates
# --- イベントリスナー接続 ---
def on_fn_mode_change(is_fn_mode_on: bool) -> gr.Checkbox:
if is_fn_mode_on: return gr.update(value=False)
return gr.update()
def on_symlink_mode_change(is_symlink_mode_on: bool) -> gr.Checkbox:
if is_symlink_mode_on: return gr.update(value=False)
return gr.update()
refresh_inputs = [use_fn_model_mode_checkbox, use_symlink_mode_checkbox]
refresh_outputs = [selected_model_dropdown, current_styles_dropdown, style_weight_for_synth_slider, all_styles_data_state]
use_fn_model_mode_checkbox.change(on_fn_mode_change, inputs=[use_fn_model_mode_checkbox], outputs=[use_symlink_mode_checkbox]).then(action_refresh_model_list, inputs=refresh_inputs, outputs=refresh_outputs)
use_symlink_mode_checkbox.change(on_symlink_mode_change, inputs=[use_symlink_mode_checkbox], outputs=[use_fn_model_mode_checkbox]).then(action_refresh_model_list, inputs=refresh_inputs, outputs=refresh_outputs)
refresh_model_list_button.click(fn=action_refresh_model_list, inputs=refresh_inputs, outputs=refresh_outputs)
app.load(fn=action_refresh_model_list, inputs=refresh_inputs, outputs=refresh_outputs)
selected_model_dropdown.change(on_model_select_change, inputs=[selected_model_dropdown], outputs=[current_styles_dropdown, style_weight_for_synth_slider, all_styles_data_state])
current_styles_dropdown.change(on_style_dropdown_select, inputs=[current_styles_dropdown, all_styles_data_state], outputs=[style_weight_for_synth_slider])
use_assist_text_checkbox.change(lambda x: (gr.update(visible=x), gr.update(visible=x)), inputs=[use_assist_text_checkbox], outputs=[assist_text_textbox, assist_text_weight_slider])
# generate_buttonのoutputsに、追加したStateを追加
generate_outputs = [status_textbox, audio_output_area]
for i in range(MAX_AUDIO_OUTPUTS):
generate_outputs.extend([audio_item_columns[i], audio_outputs[i], download_buttons[i]])
generate_outputs.extend(dummy_audio_item_columns)
generate_outputs.extend(synthesized_text_states)
generate_outputs.append(synthesized_wav_files_state)
generate_outputs.append(synthesized_model_names_state)
generate_outputs.append(synthesized_style_names_state)
generate_outputs.append(synthesized_style_weights_state)
generate_button.click(
fn=action_run_synthesis,
inputs=[
selected_model_dropdown,
current_styles_dropdown, style_weight_for_synth_slider,
text_input, batch_count_slider,
language_dropdown, seed_input, speaker_name_textbox,
reference_audio_input,
length_scale_slider, pitch_scale_slider, intonation_scale_slider,
noise_scale_slider, noise_scale_w_slider, sdp_ratio_slider,
use_assist_text_checkbox, assist_text_textbox, assist_text_weight_slider,
random_text_mode_slider, random_text_ratio_textbox,
all_styles_data_state
],
outputs=generate_outputs
)
# 「キープ」ボタンのクリックイベントを修正。
# UIのドロップダウンからではなく、Stateに保持された生成時のパラメータを使用する。
for i in range(MAX_AUDIO_OUTPUTS):
to_workbench_buttons[i].click(
fn=lambda current_status, workbench_list, text, all_wavs, all_models, all_styles, all_weights, idx=i: \
add_to_workbench(
current_status, workbench_list,
all_wavs[idx] if all_wavs and idx < len(all_wavs) else None,
text,
all_models[idx] if all_models and idx < len(all_models) else "Unknown",
all_styles[idx] if all_styles and idx < len(all_styles) else "Unknown",
all_weights[idx] if all_weights and idx < len(all_weights) else DEFAULT_STYLE_WEIGHT
),
inputs=[
status_textbox, workbench_state, synthesized_text_states[i],
synthesized_wav_files_state,
synthesized_model_names_state,
synthesized_style_names_state,
synthesized_style_weights_state
],
outputs=[status_textbox, workbench_state] + all_workbench_ui_components
)
for i, item in enumerate(workbench_items):
item["delete_btn"].click(
fn=lambda s, w, current_i=i: remove_from_workbench(s, current_i, w),
inputs=[status_textbox, workbench_state],
outputs=[status_textbox, workbench_state] + all_workbench_ui_components,
)
merge_preview_button.click(
fn=action_merge_preview,
inputs=[
status_textbox,
first_audio_num_input,
volume_first_slider,
second_audio_num_input,
volume_second_slider,
merge_pause_input,
workbench_state
],
outputs=[status_textbox, preview_audio_player, preview_download_button, merged_preview_state]
)
add_merged_to_workbench_button.click(
fn=action_add_merged_to_workbench,
inputs=[
status_textbox,
merged_preview_state,
workbench_state,
delete_originals_checkbox,
first_audio_num_input,
second_audio_num_input
],
outputs=[status_textbox, workbench_state] + all_workbench_ui_components
)
player_width_slider.release(lambda w: f"<script>document.documentElement.style.setProperty('--audio-width', '{w}px');</script>", inputs=[player_width_slider], outputs=[js_injector_html])
return app
# --- アプリケーションの起動 ---
if __name__ == "__main__":
if Path("model_assets").exists(): shutil.rmtree("model_assets")
merger_cache_path = Path("/tmp/sbv2_merger_cache")
mock_model_holder = TTSModelHolder()
if ENABLE_LOGGING:
print(f"Initial models loaded by TTSModelHolder: {mock_model_holder.model_names}")
app = create_synthesis_app(mock_model_holder)
assets_dir_path = assets_root_path.resolve()
assets_dir_path.mkdir(exist_ok=True)
allowed_paths = [str(assets_dir_path)]
if sys.platform != "win32" and merger_cache_path.is_dir():
allowed_paths.append(str(merger_cache_path.resolve()))
output_dir_path = Path("output").resolve()
output_dir_path.mkdir(exist_ok=True, parents=True)
allowed_paths.append(str(output_dir_path))
allowed_paths.append(tempfile.gettempdir())
print(f"Gradioに次のパスへのアクセスを許可します: {', '.join(allowed_paths)}")
app.launch(allowed_paths=allowed_paths) |