File size: 5,428 Bytes
12ac14b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import numpy as np
import ast
import csv
import pickle
import os
import json


def subset_and_unwrapp(
    df,
    subset_list,
    target_column
):

    subset_df = df.loc[:, subset_list].copy()

    subset_df[target_column] = subset_df[target_column].apply(
        lambda x: ast.literal_eval(x) if isinstance(
            x,
            str
        ) and x != 'nan' else np.nan)

    subset_df = subset_df.explode(target_column)

    subset_df = subset_df.reset_index(drop=True)

    return subset_df


def parse_overview_table(df_in):

    columns = df_in.columns.to_list()

    # Find columns that have string values representing lists
    columns_with_lists = []
    for column in df_in.columns:
        if df_in[column].apply(
            lambda x: isinstance(
                x,
                str
                ) and x.startswith(
                '['
                ) and x.endswith(
                ']')
                ).any():

            columns_with_lists.append(column)

    overview_dict = {}
    table_structure = ""

    for column in columns[1:]:
        if column in columns_with_lists:
            temp_df = subset_and_unwrapp(
                df_in,
                [columns[0], column],
                column
            )

        else:
            temp_df = df_in[[columns[0], column]]

        temp_key = "ID" + column

        overview_dict[temp_key] = temp_df

        table_text = "{table:" + temp_key + ","
        column_text = "columns:[sampleId," + column + "]};"
        entry = table_text + column_text
        table_structure += entry

    print(overview_dict.keys())

    return overview_dict, table_structure


def get_unique_value_list(sample_search_df,
                          key,
                          file_path,
                          run=False):
    if run:
        com_list = sample_search_df[key].unique()
        com_par_list = []
        for item in com_list:
            if item is not np.nan:
                python_list = ast.literal_eval(item)
                com_par_list.extend(python_list)
            else:
                com_par_list.append("NULL")

        com_par_list = list(set(com_par_list))

        if key in com_par_list:
            com_par_list.remove(key)

        # Save unique values to CSV
        with open(file_path, 'w', newline='') as file:
            writer = csv.writer(file)
            writer.writerows([[value] for value in com_par_list])

        print(f"Unique values for {key} saved to", file_path)
        return com_par_list

    else:
        print(f"Skipeed for {key}")
        com_par_list = []

        with open(file_path, 'r') as file:
            reader = csv.reader(file)
            for row in reader:
                com_par_list.append(row[0])

        return com_par_list


def extract_unique_options(
        sample_search_df,
        data_path,
        run=False):

    compo_file_path = data_path + "\\composition_list.csv"
    compositions = get_unique_value_list(
        sample_search_df,
        'composition',
        compo_file_path,
        run=run)

    functions_file_path = data_path + "\\functions_list.csv"
    functions = get_unique_value_list(
        sample_search_df,
        'functions',
        functions_file_path,
        run=run)

    characterizations_file_path = data_path + "\\characterizations_list.csv"
    characterizations = get_unique_value_list(
        sample_search_df,
        'characterizations',
        characterizations_file_path,
        run=run)

    return {
        "compositions": compositions,
        "functions": functions,
        "characterizations": characterizations
    }


def load_sample_list(
        output_data_dir,
        read_sample,
        n_to_read,
        data_path
        ):
    sample_list_all_path = data_path + "\\sample_list_all.pickle"
    Json_list = os.listdir(output_data_dir)
    if read_sample:

        sample_list = []
        for i in range(0, n_to_read):
            file_path = os.path.join(
                output_data_dir,
                Json_list[i])

            with open(file_path, 'r') as file:
                sample_list.append(json.load(file))

        with open(sample_list_all_path, 'wb') as file:
            pickle.dump(sample_list, file)
    else:
        with open(sample_list_all_path, 'rb') as file:
            sample_list = pickle.load(file)

    return sample_list


def parse_dictionary(source_dictionary,
                     key,
                     new_dictionary):
    for entry in source_dictionary:
        new_dictionary[str(entry)] = source_dictionary[entry][key]


def parse_overview_raw_data(
        sample_search_df,
        overview_data_path,
        re_parse_overview=False
        ):

    overview_dict_path = overview_data_path + "\\overview_dict.pickle"
    overview_table_path = overview_data_path + "\\overview_table.pickle"
    if re_parse_overview:
        overview_dict, table_structure = parse_overview_table(sample_search_df)

        with open(overview_dict_path, 'wb') as file:
            pickle.dump(overview_dict, file)

        with open(overview_table_path, 'wb') as file:
            pickle.dump(table_structure, file)
    else:
        with open(overview_dict_path, 'rb') as file:
            overview_dict = pickle.load(file)

        with open(overview_table_path, 'rb') as file:
            table_structure = pickle.load(file)

    return overview_dict, table_structure