Spaces:
Running
Running
| """ | |
| Copyright(C) 2022-2023 Intel Corporation | |
| SPDX - License - Identifier: Apache - 2.0 | |
| """ | |
| import inspect | |
| from typing import Union, Optional, Any, List, Dict | |
| import numpy as np | |
| # openvino | |
| from openvino.runtime import Core | |
| # tokenizer | |
| from transformers import CLIPTokenizer | |
| import torch | |
| import random | |
| from diffusers import DiffusionPipeline | |
| from diffusers.schedulers import (DDIMScheduler, | |
| LMSDiscreteScheduler, | |
| PNDMScheduler, | |
| EulerDiscreteScheduler, | |
| EulerAncestralDiscreteScheduler) | |
| from diffusers.image_processor import VaeImageProcessor | |
| from diffusers.utils.torch_utils import randn_tensor | |
| from diffusers.utils import PIL_INTERPOLATION | |
| import cv2 | |
| import os | |
| import sys | |
| # for multithreading | |
| import concurrent.futures | |
| #For GIF | |
| import PIL | |
| from PIL import Image | |
| import glob | |
| import json | |
| import time | |
| def scale_fit_to_window(dst_width:int, dst_height:int, image_width:int, image_height:int): | |
| """ | |
| Preprocessing helper function for calculating image size for resize with peserving original aspect ratio | |
| and fitting image to specific window size | |
| Parameters: | |
| dst_width (int): destination window width | |
| dst_height (int): destination window height | |
| image_width (int): source image width | |
| image_height (int): source image height | |
| Returns: | |
| result_width (int): calculated width for resize | |
| result_height (int): calculated height for resize | |
| """ | |
| im_scale = min(dst_height / image_height, dst_width / image_width) | |
| return int(im_scale * image_width), int(im_scale * image_height) | |
| def preprocess(image: PIL.Image.Image, ht=512, wt=512): | |
| """ | |
| Image preprocessing function. Takes image in PIL.Image format, resizes it to keep aspect ration and fits to model input window 512x512, | |
| then converts it to np.ndarray and adds padding with zeros on right or bottom side of image (depends from aspect ratio), after that | |
| converts data to float32 data type and change range of values from [0, 255] to [-1, 1], finally, converts data layout from planar NHWC to NCHW. | |
| The function returns preprocessed input tensor and padding size, which can be used in postprocessing. | |
| Parameters: | |
| image (PIL.Image.Image): input image | |
| Returns: | |
| image (np.ndarray): preprocessed image tensor | |
| meta (Dict): dictionary with preprocessing metadata info | |
| """ | |
| src_width, src_height = image.size | |
| image = image.convert('RGB') | |
| dst_width, dst_height = scale_fit_to_window( | |
| wt, ht, src_width, src_height) | |
| image = np.array(image.resize((dst_width, dst_height), | |
| resample=PIL.Image.Resampling.LANCZOS))[None, :] | |
| pad_width = wt - dst_width | |
| pad_height = ht - dst_height | |
| pad = ((0, 0), (0, pad_height), (0, pad_width), (0, 0)) | |
| image = np.pad(image, pad, mode="constant") | |
| image = image.astype(np.float32) / 255.0 | |
| image = 2.0 * image - 1.0 | |
| image = image.transpose(0, 3, 1, 2) | |
| return image, {"padding": pad, "src_width": src_width, "src_height": src_height} | |
| def try_enable_npu_turbo(device, core): | |
| import platform | |
| if "windows" in platform.system().lower(): | |
| if "NPU" in device and "3720" not in core.get_property('NPU', 'DEVICE_ARCHITECTURE'): | |
| try: | |
| core.set_property(properties={'NPU_TURBO': 'YES'},device_name='NPU') | |
| except: | |
| print(f"Failed loading NPU_TURBO for device {device}. Skipping... ") | |
| else: | |
| print_npu_turbo_art() | |
| else: | |
| print(f"Skipping NPU_TURBO for device {device}") | |
| elif "linux" in platform.system().lower(): | |
| if os.path.isfile('/sys/module/intel_vpu/parameters/test_mode'): | |
| with open('/sys/module/intel_vpu/version', 'r') as f: | |
| version = f.readline().split()[0] | |
| if tuple(map(int, version.split('.'))) < tuple(map(int, '1.9.0'.split('.'))): | |
| print(f"The driver intel_vpu-1.9.0 (or later) needs to be loaded for NPU Turbo (currently {version}). Skipping...") | |
| else: | |
| with open('/sys/module/intel_vpu/parameters/test_mode', 'r') as tm_file: | |
| test_mode = int(tm_file.readline().split()[0]) | |
| if test_mode == 512: | |
| print_npu_turbo_art() | |
| else: | |
| print("The driver >=intel_vpu-1.9.0 was must be loaded with " | |
| "\"modprobe intel_vpu test_mode=512\" to enable NPU_TURBO " | |
| f"(currently test_mode={test_mode}). Skipping...") | |
| else: | |
| print(f"The driver >=intel_vpu-1.9.0 must be loaded with \"modprobe intel_vpu test_mode=512\" to enable NPU_TURBO. Skipping...") | |
| else: | |
| print(f"This platform ({platform.system()}) does not support NPU Turbo") | |
| def result(var): | |
| return next(iter(var.values())) | |
| class StableDiffusionEngineAdvanced(DiffusionPipeline): | |
| def __init__(self, model="runwayml/stable-diffusion-v1-5", | |
| tokenizer="openai/clip-vit-large-patch14", | |
| device=["CPU", "CPU", "CPU", "CPU"]): | |
| try: | |
| self.tokenizer = CLIPTokenizer.from_pretrained(model, local_files_only=True) | |
| except: | |
| self.tokenizer = CLIPTokenizer.from_pretrained(tokenizer) | |
| self.tokenizer.save_pretrained(model) | |
| self.core = Core() | |
| self.core.set_property({'CACHE_DIR': os.path.join(model, 'cache')}) | |
| try_enable_npu_turbo(device, self.core) | |
| print("Loading models... ") | |
| with concurrent.futures.ThreadPoolExecutor(max_workers=8) as executor: | |
| futures = { | |
| "unet_time_proj": executor.submit(self.core.compile_model, os.path.join(model, "unet_time_proj.xml"), device[0]), | |
| "text": executor.submit(self.load_model, model, "text_encoder", device[0]), | |
| "unet": executor.submit(self.load_model, model, "unet_int8", device[1]), | |
| "unet_neg": executor.submit(self.load_model, model, "unet_int8", device[2]) if device[1] != device[2] else None, | |
| "vae_decoder": executor.submit(self.load_model, model, "vae_decoder", device[3]), | |
| "vae_encoder": executor.submit(self.load_model, model, "vae_encoder", device[3]) | |
| } | |
| self.unet_time_proj = futures["unet_time_proj"].result() | |
| self.text_encoder = futures["text"].result() | |
| self.unet = futures["unet"].result() | |
| self.unet_neg = futures["unet_neg"].result() if futures["unet_neg"] else self.unet | |
| self.vae_decoder = futures["vae_decoder"].result() | |
| self.vae_encoder = futures["vae_encoder"].result() | |
| print("Text Device:", device[0]) | |
| print("unet Device:", device[1]) | |
| print("unet-neg Device:", device[2]) | |
| print("VAE Device:", device[3]) | |
| self._text_encoder_output = self.text_encoder.output(0) | |
| self._vae_d_output = self.vae_decoder.output(0) | |
| self._vae_e_output = self.vae_encoder.output(0) if self.vae_encoder else None | |
| self.set_dimensions() | |
| self.infer_request_neg = self.unet_neg.create_infer_request() | |
| self.infer_request = self.unet.create_infer_request() | |
| self.infer_request_time_proj = self.unet_time_proj.create_infer_request() | |
| self.time_proj_constants = np.load(os.path.join(model, "time_proj_constants.npy")) | |
| def load_model(self, model, model_name, device): | |
| if "NPU" in device: | |
| with open(os.path.join(model, f"{model_name}.blob"), "rb") as f: | |
| return self.core.import_model(f.read(), device) | |
| return self.core.compile_model(os.path.join(model, f"{model_name}.xml"), device) | |
| def set_dimensions(self): | |
| latent_shape = self.unet.input("latent_model_input").shape | |
| if latent_shape[1] == 4: | |
| self.height = latent_shape[2] * 8 | |
| self.width = latent_shape[3] * 8 | |
| else: | |
| self.height = latent_shape[1] * 8 | |
| self.width = latent_shape[2] * 8 | |
| def __call__( | |
| self, | |
| prompt, | |
| init_image = None, | |
| negative_prompt=None, | |
| scheduler=None, | |
| strength = 0.5, | |
| num_inference_steps = 32, | |
| guidance_scale = 7.5, | |
| eta = 0.0, | |
| create_gif = False, | |
| model = None, | |
| callback = None, | |
| callback_userdata = None | |
| ): | |
| # extract condition | |
| text_input = self.tokenizer( | |
| prompt, | |
| padding="max_length", | |
| max_length=self.tokenizer.model_max_length, | |
| truncation=True, | |
| return_tensors="np", | |
| ) | |
| text_embeddings = self.text_encoder(text_input.input_ids)[self._text_encoder_output] | |
| # do classifier free guidance | |
| do_classifier_free_guidance = guidance_scale > 1.0 | |
| if do_classifier_free_guidance: | |
| if negative_prompt is None: | |
| uncond_tokens = [""] | |
| elif isinstance(negative_prompt, str): | |
| uncond_tokens = [negative_prompt] | |
| else: | |
| uncond_tokens = negative_prompt | |
| tokens_uncond = self.tokenizer( | |
| uncond_tokens, | |
| padding="max_length", | |
| max_length=self.tokenizer.model_max_length, #truncation=True, | |
| return_tensors="np" | |
| ) | |
| uncond_embeddings = self.text_encoder(tokens_uncond.input_ids)[self._text_encoder_output] | |
| text_embeddings = np.concatenate([uncond_embeddings, text_embeddings]) | |
| # set timesteps | |
| accepts_offset = "offset" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) | |
| extra_set_kwargs = {} | |
| if accepts_offset: | |
| extra_set_kwargs["offset"] = 1 | |
| scheduler.set_timesteps(num_inference_steps, **extra_set_kwargs) | |
| timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, scheduler) | |
| latent_timestep = timesteps[:1] | |
| # get the initial random noise unless the user supplied it | |
| latents, meta = self.prepare_latents(init_image, latent_timestep, scheduler) | |
| # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
| # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
| # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
| # and should be between [0, 1] | |
| accepts_eta = "eta" in set(inspect.signature(scheduler.step).parameters.keys()) | |
| extra_step_kwargs = {} | |
| if accepts_eta: | |
| extra_step_kwargs["eta"] = eta | |
| if create_gif: | |
| frames = [] | |
| for i, t in enumerate(self.progress_bar(timesteps)): | |
| if callback: | |
| callback(i, callback_userdata) | |
| # expand the latents if we are doing classifier free guidance | |
| noise_pred = [] | |
| latent_model_input = latents | |
| latent_model_input = scheduler.scale_model_input(latent_model_input, t) | |
| latent_model_input_neg = latent_model_input | |
| if self.unet.input("latent_model_input").shape[1] != 4: | |
| #print("In transpose") | |
| try: | |
| latent_model_input = latent_model_input.permute(0,2,3,1) | |
| except: | |
| latent_model_input = latent_model_input.transpose(0,2,3,1) | |
| if self.unet_neg.input("latent_model_input").shape[1] != 4: | |
| #print("In transpose") | |
| try: | |
| latent_model_input_neg = latent_model_input_neg.permute(0,2,3,1) | |
| except: | |
| latent_model_input_neg = latent_model_input_neg.transpose(0,2,3,1) | |
| time_proj_constants_fp16 = np.float16(self.time_proj_constants) | |
| t_scaled_fp16 = time_proj_constants_fp16 * np.float16(t) | |
| cosine_t_fp16 = np.cos(t_scaled_fp16) | |
| sine_t_fp16 = np.sin(t_scaled_fp16) | |
| t_scaled = self.time_proj_constants * np.float32(t) | |
| cosine_t = np.cos(t_scaled) | |
| sine_t = np.sin(t_scaled) | |
| time_proj_dict = {"sine_t" : np.float32(sine_t), "cosine_t" : np.float32(cosine_t)} | |
| self.infer_request_time_proj.start_async(time_proj_dict) | |
| self.infer_request_time_proj.wait() | |
| time_proj = self.infer_request_time_proj.get_output_tensor(0).data.astype(np.float32) | |
| input_tens_neg_dict = {"time_proj": np.float32(time_proj), "latent_model_input":latent_model_input_neg, "encoder_hidden_states": np.expand_dims(text_embeddings[0], axis=0)} | |
| input_tens_dict = {"time_proj": np.float32(time_proj), "latent_model_input":latent_model_input, "encoder_hidden_states": np.expand_dims(text_embeddings[1], axis=0)} | |
| self.infer_request_neg.start_async(input_tens_neg_dict) | |
| self.infer_request.start_async(input_tens_dict) | |
| self.infer_request_neg.wait() | |
| self.infer_request.wait() | |
| noise_pred_neg = self.infer_request_neg.get_output_tensor(0) | |
| noise_pred_pos = self.infer_request.get_output_tensor(0) | |
| noise_pred.append(noise_pred_neg.data.astype(np.float32)) | |
| noise_pred.append(noise_pred_pos.data.astype(np.float32)) | |
| # perform guidance | |
| if do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_text = noise_pred[0], noise_pred[1] | |
| noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents = scheduler.step(torch.from_numpy(noise_pred), t, torch.from_numpy(latents), **extra_step_kwargs)["prev_sample"].numpy() | |
| if create_gif: | |
| frames.append(latents) | |
| if callback: | |
| callback(num_inference_steps, callback_userdata) | |
| # scale and decode the image latents with vae | |
| latents = 1 / 0.18215 * latents | |
| start = time.time() | |
| image = self.vae_decoder(latents)[self._vae_d_output] | |
| print("Decoder ended:",time.time() - start) | |
| image = self.postprocess_image(image, meta) | |
| if create_gif: | |
| gif_folder=os.path.join(model,"../../../gif") | |
| print("gif_folder:",gif_folder) | |
| if not os.path.exists(gif_folder): | |
| os.makedirs(gif_folder) | |
| for i in range(0,len(frames)): | |
| image = self.vae_decoder(frames[i]*(1/0.18215))[self._vae_d_output] | |
| image = self.postprocess_image(image, meta) | |
| output = gif_folder + "/" + str(i).zfill(3) +".png" | |
| cv2.imwrite(output, image) | |
| with open(os.path.join(gif_folder, "prompt.json"), "w") as file: | |
| json.dump({"prompt": prompt}, file) | |
| frames_image = [Image.open(image) for image in glob.glob(f"{gif_folder}/*.png")] | |
| frame_one = frames_image[0] | |
| gif_file=os.path.join(gif_folder,"stable_diffusion.gif") | |
| frame_one.save(gif_file, format="GIF", append_images=frames_image, save_all=True, duration=100, loop=0) | |
| return image | |
| def prepare_latents(self, image:PIL.Image.Image = None, latent_timestep:torch.Tensor = None, scheduler = LMSDiscreteScheduler): | |
| """ | |
| Function for getting initial latents for starting generation | |
| Parameters: | |
| image (PIL.Image.Image, *optional*, None): | |
| Input image for generation, if not provided randon noise will be used as starting point | |
| latent_timestep (torch.Tensor, *optional*, None): | |
| Predicted by scheduler initial step for image generation, required for latent image mixing with nosie | |
| Returns: | |
| latents (np.ndarray): | |
| Image encoded in latent space | |
| """ | |
| latents_shape = (1, 4, self.height // 8, self.width // 8) | |
| noise = np.random.randn(*latents_shape).astype(np.float32) | |
| if image is None: | |
| ##print("Image is NONE") | |
| # if we use LMSDiscreteScheduler, let's make sure latents are mulitplied by sigmas | |
| if isinstance(scheduler, LMSDiscreteScheduler): | |
| noise = noise * scheduler.sigmas[0].numpy() | |
| return noise, {} | |
| elif isinstance(scheduler, EulerDiscreteScheduler) or isinstance(scheduler,EulerAncestralDiscreteScheduler): | |
| noise = noise * scheduler.sigmas.max().numpy() | |
| return noise, {} | |
| else: | |
| return noise, {} | |
| input_image, meta = preprocess(image,self.height,self.width) | |
| moments = self.vae_encoder(input_image)[self._vae_e_output] | |
| mean, logvar = np.split(moments, 2, axis=1) | |
| std = np.exp(logvar * 0.5) | |
| latents = (mean + std * np.random.randn(*mean.shape)) * 0.18215 | |
| latents = scheduler.add_noise(torch.from_numpy(latents), torch.from_numpy(noise), latent_timestep).numpy() | |
| return latents, meta | |
| def postprocess_image(self, image:np.ndarray, meta:Dict): | |
| """ | |
| Postprocessing for decoded image. Takes generated image decoded by VAE decoder, unpad it to initial image size (if required), | |
| normalize and convert to [0, 255] pixels range. Optionally, convertes it from np.ndarray to PIL.Image format | |
| Parameters: | |
| image (np.ndarray): | |
| Generated image | |
| meta (Dict): | |
| Metadata obtained on latents preparing step, can be empty | |
| output_type (str, *optional*, pil): | |
| Output format for result, can be pil or numpy | |
| Returns: | |
| image (List of np.ndarray or PIL.Image.Image): | |
| Postprocessed images | |
| if "src_height" in meta: | |
| orig_height, orig_width = meta["src_height"], meta["src_width"] | |
| image = [cv2.resize(img, (orig_width, orig_height)) | |
| for img in image] | |
| return image | |
| """ | |
| if "padding" in meta: | |
| pad = meta["padding"] | |
| (_, end_h), (_, end_w) = pad[1:3] | |
| h, w = image.shape[2:] | |
| #print("image shape",image.shape[2:]) | |
| unpad_h = h - end_h | |
| unpad_w = w - end_w | |
| image = image[:, :, :unpad_h, :unpad_w] | |
| image = np.clip(image / 2 + 0.5, 0, 1) | |
| image = (image[0].transpose(1, 2, 0)[:, :, ::-1] * 255).astype(np.uint8) | |
| if "src_height" in meta: | |
| orig_height, orig_width = meta["src_height"], meta["src_width"] | |
| image = cv2.resize(image, (orig_width, orig_height)) | |
| return image | |
| def get_timesteps(self, num_inference_steps:int, strength:float, scheduler): | |
| """ | |
| Helper function for getting scheduler timesteps for generation | |
| In case of image-to-image generation, it updates number of steps according to strength | |
| Parameters: | |
| num_inference_steps (int): | |
| number of inference steps for generation | |
| strength (float): | |
| value between 0.0 and 1.0, that controls the amount of noise that is added to the input image. | |
| Values that approach 1.0 allow for lots of variations but will also produce images that are not semantically consistent with the input. | |
| """ | |
| # get the original timestep using init_timestep | |
| init_timestep = min(int(num_inference_steps * strength), num_inference_steps) | |
| t_start = max(num_inference_steps - init_timestep, 0) | |
| timesteps = scheduler.timesteps[t_start:] | |
| return timesteps, num_inference_steps - t_start | |
| class StableDiffusionEngine(DiffusionPipeline): | |
| def __init__( | |
| self, | |
| model="bes-dev/stable-diffusion-v1-4-openvino", | |
| tokenizer="openai/clip-vit-large-patch14", | |
| device=["CPU","CPU","CPU","CPU"]): | |
| self.core = Core() | |
| self.core.set_property({'CACHE_DIR': os.path.join(model, 'cache')}) | |
| self.batch_size = 2 if device[1] == device[2] and device[1] == "GPU" else 1 | |
| try_enable_npu_turbo(device, self.core) | |
| try: | |
| self.tokenizer = CLIPTokenizer.from_pretrained(model, local_files_only=True) | |
| except Exception as e: | |
| print("Local tokenizer not found. Attempting to download...") | |
| self.tokenizer = self.download_tokenizer(tokenizer, model) | |
| print("Loading models... ") | |
| with concurrent.futures.ThreadPoolExecutor(max_workers=8) as executor: | |
| text_future = executor.submit(self.load_model, model, "text_encoder", device[0]) | |
| vae_de_future = executor.submit(self.load_model, model, "vae_decoder", device[3]) | |
| vae_en_future = executor.submit(self.load_model, model, "vae_encoder", device[3]) | |
| if self.batch_size == 1: | |
| if "int8" not in model: | |
| unet_future = executor.submit(self.load_model, model, "unet_bs1", device[1]) | |
| unet_neg_future = executor.submit(self.load_model, model, "unet_bs1", device[2]) if device[1] != device[2] else None | |
| else: | |
| unet_future = executor.submit(self.load_model, model, "unet_int8a16", device[1]) | |
| unet_neg_future = executor.submit(self.load_model, model, "unet_int8a16", device[2]) if device[1] != device[2] else None | |
| else: | |
| unet_future = executor.submit(self.load_model, model, "unet", device[1]) | |
| unet_neg_future = None | |
| self.unet = unet_future.result() | |
| self.unet_neg = unet_neg_future.result() if unet_neg_future else self.unet | |
| self.text_encoder = text_future.result() | |
| self.vae_decoder = vae_de_future.result() | |
| self.vae_encoder = vae_en_future.result() | |
| print("Text Device:", device[0]) | |
| print("unet Device:", device[1]) | |
| print("unet-neg Device:", device[2]) | |
| print("VAE Device:", device[3]) | |
| self._text_encoder_output = self.text_encoder.output(0) | |
| self._unet_output = self.unet.output(0) | |
| self._vae_d_output = self.vae_decoder.output(0) | |
| self._vae_e_output = self.vae_encoder.output(0) if self.vae_encoder else None | |
| self.unet_input_tensor_name = "sample" if 'sample' in self.unet.input(0).names else "latent_model_input" | |
| if self.batch_size == 1: | |
| self.infer_request = self.unet.create_infer_request() | |
| self.infer_request_neg = self.unet_neg.create_infer_request() | |
| self._unet_neg_output = self.unet_neg.output(0) | |
| else: | |
| self.infer_request = None | |
| self.infer_request_neg = None | |
| self._unet_neg_output = None | |
| self.set_dimensions() | |
| def load_model(self, model, model_name, device): | |
| if "NPU" in device: | |
| with open(os.path.join(model, f"{model_name}.blob"), "rb") as f: | |
| return self.core.import_model(f.read(), device) | |
| return self.core.compile_model(os.path.join(model, f"{model_name}.xml"), device) | |
| def set_dimensions(self): | |
| latent_shape = self.unet.input(self.unet_input_tensor_name).shape | |
| if latent_shape[1] == 4: | |
| self.height = latent_shape[2] * 8 | |
| self.width = latent_shape[3] * 8 | |
| else: | |
| self.height = latent_shape[1] * 8 | |
| self.width = latent_shape[2] * 8 | |
| def __call__( | |
| self, | |
| prompt, | |
| init_image=None, | |
| negative_prompt=None, | |
| scheduler=None, | |
| strength=0.5, | |
| num_inference_steps=32, | |
| guidance_scale=7.5, | |
| eta=0.0, | |
| create_gif=False, | |
| model=None, | |
| callback=None, | |
| callback_userdata=None | |
| ): | |
| # extract condition | |
| text_input = self.tokenizer( | |
| prompt, | |
| padding="max_length", | |
| max_length=self.tokenizer.model_max_length, | |
| truncation=True, | |
| return_tensors="np", | |
| ) | |
| text_embeddings = self.text_encoder(text_input.input_ids)[self._text_encoder_output] | |
| # do classifier free guidance | |
| do_classifier_free_guidance = guidance_scale > 1.0 | |
| if do_classifier_free_guidance: | |
| if negative_prompt is None: | |
| uncond_tokens = [""] | |
| elif isinstance(negative_prompt, str): | |
| uncond_tokens = [negative_prompt] | |
| else: | |
| uncond_tokens = negative_prompt | |
| tokens_uncond = self.tokenizer( | |
| uncond_tokens, | |
| padding="max_length", | |
| max_length=self.tokenizer.model_max_length, # truncation=True, | |
| return_tensors="np" | |
| ) | |
| uncond_embeddings = self.text_encoder(tokens_uncond.input_ids)[self._text_encoder_output] | |
| text_embeddings = np.concatenate([uncond_embeddings, text_embeddings]) | |
| # set timesteps | |
| accepts_offset = "offset" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) | |
| extra_set_kwargs = {} | |
| if accepts_offset: | |
| extra_set_kwargs["offset"] = 1 | |
| scheduler.set_timesteps(num_inference_steps, **extra_set_kwargs) | |
| timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, scheduler) | |
| latent_timestep = timesteps[:1] | |
| # get the initial random noise unless the user supplied it | |
| latents, meta = self.prepare_latents(init_image, latent_timestep, scheduler,model) | |
| # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
| # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
| # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
| # and should be between [0, 1] | |
| accepts_eta = "eta" in set(inspect.signature(scheduler.step).parameters.keys()) | |
| extra_step_kwargs = {} | |
| if accepts_eta: | |
| extra_step_kwargs["eta"] = eta | |
| if create_gif: | |
| frames = [] | |
| for i, t in enumerate(self.progress_bar(timesteps)): | |
| if callback: | |
| callback(i, callback_userdata) | |
| if self.batch_size == 1: | |
| # expand the latents if we are doing classifier free guidance | |
| noise_pred = [] | |
| latent_model_input = latents | |
| #Scales the denoising model input by `(sigma**2 + 1) ** 0.5` to match the Euler algorithm. | |
| latent_model_input = scheduler.scale_model_input(latent_model_input, t) | |
| latent_model_input_pos = latent_model_input | |
| latent_model_input_neg = latent_model_input | |
| if self.unet.input(self.unet_input_tensor_name).shape[1] != 4: | |
| try: | |
| latent_model_input_pos = latent_model_input_pos.permute(0,2,3,1) | |
| except: | |
| latent_model_input_pos = latent_model_input_pos.transpose(0,2,3,1) | |
| if self.unet_neg.input(self.unet_input_tensor_name).shape[1] != 4: | |
| try: | |
| latent_model_input_neg = latent_model_input_neg.permute(0,2,3,1) | |
| except: | |
| latent_model_input_neg = latent_model_input_neg.transpose(0,2,3,1) | |
| if "sample" in self.unet_input_tensor_name: | |
| input_tens_neg_dict = {"sample" : latent_model_input_neg, "encoder_hidden_states": np.expand_dims(text_embeddings[0], axis=0), "timestep": np.expand_dims(np.float32(t), axis=0)} | |
| input_tens_pos_dict = {"sample" : latent_model_input_pos, "encoder_hidden_states": np.expand_dims(text_embeddings[1], axis=0), "timestep": np.expand_dims(np.float32(t), axis=0)} | |
| else: | |
| input_tens_neg_dict = {"latent_model_input" : latent_model_input_neg, "encoder_hidden_states": np.expand_dims(text_embeddings[0], axis=0), "t": np.expand_dims(np.float32(t), axis=0)} | |
| input_tens_pos_dict = {"latent_model_input" : latent_model_input_pos, "encoder_hidden_states": np.expand_dims(text_embeddings[1], axis=0), "t": np.expand_dims(np.float32(t), axis=0)} | |
| self.infer_request_neg.start_async(input_tens_neg_dict) | |
| self.infer_request.start_async(input_tens_pos_dict) | |
| self.infer_request_neg.wait() | |
| self.infer_request.wait() | |
| noise_pred_neg = self.infer_request_neg.get_output_tensor(0) | |
| noise_pred_pos = self.infer_request.get_output_tensor(0) | |
| noise_pred.append(noise_pred_neg.data.astype(np.float32)) | |
| noise_pred.append(noise_pred_pos.data.astype(np.float32)) | |
| else: | |
| latent_model_input = np.concatenate([latents] * 2) if do_classifier_free_guidance else latents | |
| latent_model_input = scheduler.scale_model_input(latent_model_input, t) | |
| noise_pred = self.unet([latent_model_input, np.array(t, dtype=np.float32), text_embeddings])[self._unet_output] | |
| if do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_text = noise_pred[0], noise_pred[1] | |
| noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents = scheduler.step(torch.from_numpy(noise_pred), t, torch.from_numpy(latents), **extra_step_kwargs)["prev_sample"].numpy() | |
| if create_gif: | |
| frames.append(latents) | |
| if callback: | |
| callback(num_inference_steps, callback_userdata) | |
| # scale and decode the image latents with vae | |
| #if self.height == 512 and self.width == 512: | |
| latents = 1 / 0.18215 * latents | |
| image = self.vae_decoder(latents)[self._vae_d_output] | |
| image = self.postprocess_image(image, meta) | |
| return image | |
| def prepare_latents(self, image: PIL.Image.Image = None, latent_timestep: torch.Tensor = None, | |
| scheduler=LMSDiscreteScheduler,model=None): | |
| """ | |
| Function for getting initial latents for starting generation | |
| Parameters: | |
| image (PIL.Image.Image, *optional*, None): | |
| Input image for generation, if not provided randon noise will be used as starting point | |
| latent_timestep (torch.Tensor, *optional*, None): | |
| Predicted by scheduler initial step for image generation, required for latent image mixing with nosie | |
| Returns: | |
| latents (np.ndarray): | |
| Image encoded in latent space | |
| """ | |
| latents_shape = (1, 4, self.height // 8, self.width // 8) | |
| noise = np.random.randn(*latents_shape).astype(np.float32) | |
| if image is None: | |
| #print("Image is NONE") | |
| # if we use LMSDiscreteScheduler, let's make sure latents are mulitplied by sigmas | |
| if isinstance(scheduler, LMSDiscreteScheduler): | |
| noise = noise * scheduler.sigmas[0].numpy() | |
| return noise, {} | |
| elif isinstance(scheduler, EulerDiscreteScheduler): | |
| noise = noise * scheduler.sigmas.max().numpy() | |
| return noise, {} | |
| else: | |
| return noise, {} | |
| input_image, meta = preprocess(image, self.height, self.width) | |
| moments = self.vae_encoder(input_image)[self._vae_e_output] | |
| if "sd_2.1" in model: | |
| latents = moments * 0.18215 | |
| else: | |
| mean, logvar = np.split(moments, 2, axis=1) | |
| std = np.exp(logvar * 0.5) | |
| latents = (mean + std * np.random.randn(*mean.shape)) * 0.18215 | |
| latents = scheduler.add_noise(torch.from_numpy(latents), torch.from_numpy(noise), latent_timestep).numpy() | |
| return latents, meta | |
| def postprocess_image(self, image: np.ndarray, meta: Dict): | |
| """ | |
| Postprocessing for decoded image. Takes generated image decoded by VAE decoder, unpad it to initila image size (if required), | |
| normalize and convert to [0, 255] pixels range. Optionally, convertes it from np.ndarray to PIL.Image format | |
| Parameters: | |
| image (np.ndarray): | |
| Generated image | |
| meta (Dict): | |
| Metadata obtained on latents preparing step, can be empty | |
| output_type (str, *optional*, pil): | |
| Output format for result, can be pil or numpy | |
| Returns: | |
| image (List of np.ndarray or PIL.Image.Image): | |
| Postprocessed images | |
| if "src_height" in meta: | |
| orig_height, orig_width = meta["src_height"], meta["src_width"] | |
| image = [cv2.resize(img, (orig_width, orig_height)) | |
| for img in image] | |
| return image | |
| """ | |
| if "padding" in meta: | |
| pad = meta["padding"] | |
| (_, end_h), (_, end_w) = pad[1:3] | |
| h, w = image.shape[2:] | |
| # print("image shape",image.shape[2:]) | |
| unpad_h = h - end_h | |
| unpad_w = w - end_w | |
| image = image[:, :, :unpad_h, :unpad_w] | |
| image = np.clip(image / 2 + 0.5, 0, 1) | |
| image = (image[0].transpose(1, 2, 0)[:, :, ::-1] * 255).astype(np.uint8) | |
| if "src_height" in meta: | |
| orig_height, orig_width = meta["src_height"], meta["src_width"] | |
| image = cv2.resize(image, (orig_width, orig_height)) | |
| return image | |
| # image = (image / 2 + 0.5).clip(0, 1) | |
| # image = (image[0].transpose(1, 2, 0)[:, :, ::-1] * 255).astype(np.uint8) | |
| def get_timesteps(self, num_inference_steps: int, strength: float, scheduler): | |
| """ | |
| Helper function for getting scheduler timesteps for generation | |
| In case of image-to-image generation, it updates number of steps according to strength | |
| Parameters: | |
| num_inference_steps (int): | |
| number of inference steps for generation | |
| strength (float): | |
| value between 0.0 and 1.0, that controls the amount of noise that is added to the input image. | |
| Values that approach 1.0 allow for lots of variations but will also produce images that are not semantically consistent with the input. | |
| """ | |
| # get the original timestep using init_timestep | |
| init_timestep = min(int(num_inference_steps * strength), num_inference_steps) | |
| t_start = max(num_inference_steps - init_timestep, 0) | |
| timesteps = scheduler.timesteps[t_start:] | |
| return timesteps, num_inference_steps - t_start | |
| class LatentConsistencyEngine(DiffusionPipeline): | |
| def __init__( | |
| self, | |
| model="SimianLuo/LCM_Dreamshaper_v7", | |
| tokenizer="openai/clip-vit-large-patch14", | |
| device=["CPU", "CPU", "CPU"], | |
| ): | |
| super().__init__() | |
| try: | |
| self.tokenizer = CLIPTokenizer.from_pretrained(model, local_files_only=True) | |
| except: | |
| self.tokenizer = CLIPTokenizer.from_pretrained(tokenizer) | |
| self.tokenizer.save_pretrained(model) | |
| self.core = Core() | |
| self.core.set_property({'CACHE_DIR': os.path.join(model, 'cache')}) # adding caching to reduce init time | |
| try_enable_npu_turbo(device, self.core) | |
| with concurrent.futures.ThreadPoolExecutor(max_workers=8) as executor: | |
| text_future = executor.submit(self.load_model, model, "text_encoder", device[0]) | |
| unet_future = executor.submit(self.load_model, model, "unet", device[1]) | |
| vae_de_future = executor.submit(self.load_model, model, "vae_decoder", device[2]) | |
| print("Text Device:", device[0]) | |
| self.text_encoder = text_future.result() | |
| self._text_encoder_output = self.text_encoder.output(0) | |
| print("Unet Device:", device[1]) | |
| self.unet = unet_future.result() | |
| self._unet_output = self.unet.output(0) | |
| self.infer_request = self.unet.create_infer_request() | |
| print(f"VAE Device: {device[2]}") | |
| self.vae_decoder = vae_de_future.result() | |
| self.infer_request_vae = self.vae_decoder.create_infer_request() | |
| self.safety_checker = None #pipe.safety_checker | |
| self.feature_extractor = None #pipe.feature_extractor | |
| self.vae_scale_factor = 2 ** 3 | |
| self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) | |
| def load_model(self, model, model_name, device): | |
| if "NPU" in device: | |
| with open(os.path.join(model, f"{model_name}.blob"), "rb") as f: | |
| return self.core.import_model(f.read(), device) | |
| return self.core.compile_model(os.path.join(model, f"{model_name}.xml"), device) | |
| def _encode_prompt( | |
| self, | |
| prompt, | |
| num_images_per_prompt, | |
| prompt_embeds: None, | |
| ): | |
| r""" | |
| Encodes the prompt into text encoder hidden states. | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| prompt to be encoded | |
| num_images_per_prompt (`int`): | |
| number of images that should be generated per prompt | |
| prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
| provided, text embeddings will be generated from `prompt` input argument. | |
| """ | |
| if prompt_embeds is None: | |
| text_inputs = self.tokenizer( | |
| prompt, | |
| padding="max_length", | |
| max_length=self.tokenizer.model_max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| text_input_ids = text_inputs.input_ids | |
| untruncated_ids = self.tokenizer( | |
| prompt, padding="longest", return_tensors="pt" | |
| ).input_ids | |
| if untruncated_ids.shape[-1] >= text_input_ids.shape[ | |
| -1 | |
| ] and not torch.equal(text_input_ids, untruncated_ids): | |
| removed_text = self.tokenizer.batch_decode( | |
| untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] | |
| ) | |
| logger.warning( | |
| "The following part of your input was truncated because CLIP can only handle sequences up to" | |
| f" {self.tokenizer.model_max_length} tokens: {removed_text}" | |
| ) | |
| prompt_embeds = self.text_encoder(text_input_ids, share_inputs=True, share_outputs=True) | |
| prompt_embeds = torch.from_numpy(prompt_embeds[0]) | |
| bs_embed, seq_len, _ = prompt_embeds.shape | |
| # duplicate text embeddings for each generation per prompt | |
| prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
| prompt_embeds = prompt_embeds.view( | |
| bs_embed * num_images_per_prompt, seq_len, -1 | |
| ) | |
| # Don't need to get uncond prompt embedding because of LCM Guided Distillation | |
| return prompt_embeds | |
| def run_safety_checker(self, image, dtype): | |
| if self.safety_checker is None: | |
| has_nsfw_concept = None | |
| else: | |
| if torch.is_tensor(image): | |
| feature_extractor_input = self.image_processor.postprocess( | |
| image, output_type="pil" | |
| ) | |
| else: | |
| feature_extractor_input = self.image_processor.numpy_to_pil(image) | |
| safety_checker_input = self.feature_extractor( | |
| feature_extractor_input, return_tensors="pt" | |
| ) | |
| image, has_nsfw_concept = self.safety_checker( | |
| images=image, clip_input=safety_checker_input.pixel_values.to(dtype) | |
| ) | |
| return image, has_nsfw_concept | |
| def prepare_latents( | |
| self, batch_size, num_channels_latents, height, width, dtype, latents=None | |
| ): | |
| shape = ( | |
| batch_size, | |
| num_channels_latents, | |
| height // self.vae_scale_factor, | |
| width // self.vae_scale_factor, | |
| ) | |
| if latents is None: | |
| latents = torch.randn(shape, dtype=dtype) | |
| # scale the initial noise by the standard deviation required by the scheduler | |
| return latents | |
| def get_w_embedding(self, w, embedding_dim=512, dtype=torch.float32): | |
| """ | |
| see https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298 | |
| Args: | |
| timesteps: torch.Tensor: generate embedding vectors at these timesteps | |
| embedding_dim: int: dimension of the embeddings to generate | |
| dtype: data type of the generated embeddings | |
| Returns: | |
| embedding vectors with shape `(len(timesteps), embedding_dim)` | |
| """ | |
| assert len(w.shape) == 1 | |
| w = w * 1000.0 | |
| half_dim = embedding_dim // 2 | |
| emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1) | |
| emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb) | |
| emb = w.to(dtype)[:, None] * emb[None, :] | |
| emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) | |
| if embedding_dim % 2 == 1: # zero pad | |
| emb = torch.nn.functional.pad(emb, (0, 1)) | |
| assert emb.shape == (w.shape[0], embedding_dim) | |
| return emb | |
| def __call__( | |
| self, | |
| prompt: Union[str, List[str]] = None, | |
| height: Optional[int] = 512, | |
| width: Optional[int] = 512, | |
| guidance_scale: float = 7.5, | |
| scheduler = None, | |
| num_images_per_prompt: Optional[int] = 1, | |
| latents: Optional[torch.FloatTensor] = None, | |
| num_inference_steps: int = 4, | |
| lcm_origin_steps: int = 50, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| model: Optional[Dict[str, any]] = None, | |
| seed: Optional[int] = 1234567, | |
| cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| callback = None, | |
| callback_userdata = None | |
| ): | |
| # 1. Define call parameters | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| if seed is not None: | |
| torch.manual_seed(seed) | |
| #print("After Step 1: batch size is ", batch_size) | |
| # do_classifier_free_guidance = guidance_scale > 0.0 | |
| # In LCM Implementation: cfg_noise = noise_cond + cfg_scale * (noise_cond - noise_uncond) , (cfg_scale > 0.0 using CFG) | |
| # 2. Encode input prompt | |
| prompt_embeds = self._encode_prompt( | |
| prompt, | |
| num_images_per_prompt, | |
| prompt_embeds=prompt_embeds, | |
| ) | |
| #print("After Step 2: prompt embeds is ", prompt_embeds) | |
| #print("After Step 2: scheduler is ", scheduler ) | |
| # 3. Prepare timesteps | |
| scheduler.set_timesteps(num_inference_steps, original_inference_steps=lcm_origin_steps) | |
| timesteps = scheduler.timesteps | |
| #print("After Step 3: timesteps is ", timesteps) | |
| # 4. Prepare latent variable | |
| num_channels_latents = 4 | |
| latents = self.prepare_latents( | |
| batch_size * num_images_per_prompt, | |
| num_channels_latents, | |
| height, | |
| width, | |
| prompt_embeds.dtype, | |
| latents, | |
| ) | |
| latents = latents * scheduler.init_noise_sigma | |
| #print("After Step 4: ") | |
| bs = batch_size * num_images_per_prompt | |
| # 5. Get Guidance Scale Embedding | |
| w = torch.tensor(guidance_scale).repeat(bs) | |
| w_embedding = self.get_w_embedding(w, embedding_dim=256) | |
| #print("After Step 5: ") | |
| # 6. LCM MultiStep Sampling Loop: | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| if callback: | |
| callback(i+1, callback_userdata) | |
| ts = torch.full((bs,), t, dtype=torch.long) | |
| # model prediction (v-prediction, eps, x) | |
| model_pred = self.unet([latents, ts, prompt_embeds, w_embedding],share_inputs=True, share_outputs=True)[0] | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents, denoised = scheduler.step( | |
| torch.from_numpy(model_pred), t, latents, return_dict=False | |
| ) | |
| progress_bar.update() | |
| #print("After Step 6: ") | |
| vae_start = time.time() | |
| if not output_type == "latent": | |
| image = torch.from_numpy(self.vae_decoder(denoised / 0.18215, share_inputs=True, share_outputs=True)[0]) | |
| else: | |
| image = denoised | |
| print("Decoder Ended: ", time.time() - vae_start) | |
| #post_start = time.time() | |
| #if has_nsfw_concept is None: | |
| do_denormalize = [True] * image.shape[0] | |
| #else: | |
| # do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] | |
| #print ("After do_denormalize: image is ", image) | |
| image = self.image_processor.postprocess( | |
| image, output_type=output_type, do_denormalize=do_denormalize | |
| ) | |
| return image[0] | |
| class LatentConsistencyEngineAdvanced(DiffusionPipeline): | |
| def __init__( | |
| self, | |
| model="SimianLuo/LCM_Dreamshaper_v7", | |
| tokenizer="openai/clip-vit-large-patch14", | |
| device=["CPU", "CPU", "CPU"], | |
| ): | |
| super().__init__() | |
| try: | |
| self.tokenizer = CLIPTokenizer.from_pretrained(model, local_files_only=True) | |
| except: | |
| self.tokenizer = CLIPTokenizer.from_pretrained(tokenizer) | |
| self.tokenizer.save_pretrained(model) | |
| self.core = Core() | |
| self.core.set_property({'CACHE_DIR': os.path.join(model, 'cache')}) # adding caching to reduce init time | |
| #try_enable_npu_turbo(device, self.core) | |
| with concurrent.futures.ThreadPoolExecutor(max_workers=8) as executor: | |
| text_future = executor.submit(self.load_model, model, "text_encoder", device[0]) | |
| unet_future = executor.submit(self.load_model, model, "unet", device[1]) | |
| vae_de_future = executor.submit(self.load_model, model, "vae_decoder", device[2]) | |
| vae_encoder_future = executor.submit(self.load_model, model, "vae_encoder", device[2]) | |
| print("Text Device:", device[0]) | |
| self.text_encoder = text_future.result() | |
| self._text_encoder_output = self.text_encoder.output(0) | |
| print("Unet Device:", device[1]) | |
| self.unet = unet_future.result() | |
| self._unet_output = self.unet.output(0) | |
| self.infer_request = self.unet.create_infer_request() | |
| print(f"VAE Device: {device[2]}") | |
| self.vae_decoder = vae_de_future.result() | |
| self.vae_encoder = vae_encoder_future.result() | |
| self._vae_e_output = self.vae_encoder.output(0) if self.vae_encoder else None | |
| self.infer_request_vae = self.vae_decoder.create_infer_request() | |
| self.safety_checker = None #pipe.safety_checker | |
| self.feature_extractor = None #pipe.feature_extractor | |
| self.vae_scale_factor = 2 ** 3 | |
| self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) | |
| def load_model(self, model, model_name, device): | |
| print(f"Compiling the {model_name} to {device} ...") | |
| return self.core.compile_model(os.path.join(model, f"{model_name}.xml"), device) | |
| def get_timesteps(self, num_inference_steps:int, strength:float, scheduler): | |
| """ | |
| Helper function for getting scheduler timesteps for generation | |
| In case of image-to-image generation, it updates number of steps according to strength | |
| Parameters: | |
| num_inference_steps (int): | |
| number of inference steps for generation | |
| strength (float): | |
| value between 0.0 and 1.0, that controls the amount of noise that is added to the input image. | |
| Values that approach 1.0 allow for lots of variations but will also produce images that are not semantically consistent with the input. | |
| """ | |
| # get the original timestep using init_timestep | |
| init_timestep = min(int(num_inference_steps * strength), num_inference_steps) | |
| t_start = max(num_inference_steps - init_timestep, 0) | |
| timesteps = scheduler.timesteps[t_start:] | |
| return timesteps, num_inference_steps - t_start | |
| def _encode_prompt( | |
| self, | |
| prompt, | |
| num_images_per_prompt, | |
| prompt_embeds: None, | |
| ): | |
| r""" | |
| Encodes the prompt into text encoder hidden states. | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| prompt to be encoded | |
| num_images_per_prompt (`int`): | |
| number of images that should be generated per prompt | |
| prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
| provided, text embeddings will be generated from `prompt` input argument. | |
| """ | |
| if prompt_embeds is None: | |
| text_inputs = self.tokenizer( | |
| prompt, | |
| padding="max_length", | |
| max_length=self.tokenizer.model_max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| text_input_ids = text_inputs.input_ids | |
| untruncated_ids = self.tokenizer( | |
| prompt, padding="longest", return_tensors="pt" | |
| ).input_ids | |
| if untruncated_ids.shape[-1] >= text_input_ids.shape[ | |
| -1 | |
| ] and not torch.equal(text_input_ids, untruncated_ids): | |
| removed_text = self.tokenizer.batch_decode( | |
| untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] | |
| ) | |
| logger.warning( | |
| "The following part of your input was truncated because CLIP can only handle sequences up to" | |
| f" {self.tokenizer.model_max_length} tokens: {removed_text}" | |
| ) | |
| prompt_embeds = self.text_encoder(text_input_ids, share_inputs=True, share_outputs=True) | |
| prompt_embeds = torch.from_numpy(prompt_embeds[0]) | |
| bs_embed, seq_len, _ = prompt_embeds.shape | |
| # duplicate text embeddings for each generation per prompt | |
| prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
| prompt_embeds = prompt_embeds.view( | |
| bs_embed * num_images_per_prompt, seq_len, -1 | |
| ) | |
| # Don't need to get uncond prompt embedding because of LCM Guided Distillation | |
| return prompt_embeds | |
| def run_safety_checker(self, image, dtype): | |
| if self.safety_checker is None: | |
| has_nsfw_concept = None | |
| else: | |
| if torch.is_tensor(image): | |
| feature_extractor_input = self.image_processor.postprocess( | |
| image, output_type="pil" | |
| ) | |
| else: | |
| feature_extractor_input = self.image_processor.numpy_to_pil(image) | |
| safety_checker_input = self.feature_extractor( | |
| feature_extractor_input, return_tensors="pt" | |
| ) | |
| image, has_nsfw_concept = self.safety_checker( | |
| images=image, clip_input=safety_checker_input.pixel_values.to(dtype) | |
| ) | |
| return image, has_nsfw_concep | |
| def prepare_latents( | |
| self,image,timestep,batch_size, num_channels_latents, height, width, dtype, scheduler,latents=None, | |
| ): | |
| shape = ( | |
| batch_size, | |
| num_channels_latents, | |
| height // self.vae_scale_factor, | |
| width // self.vae_scale_factor, | |
| ) | |
| if image: | |
| #latents_shape = (1, 4, 512, 512 // 8) | |
| #input_image, meta = preprocess(image,512,512) | |
| latents_shape = (1, 4, 512 // 8, 512 // 8) | |
| noise = np.random.randn(*latents_shape).astype(np.float32) | |
| input_image,meta = preprocess(image,512,512) | |
| moments = self.vae_encoder(input_image)[self._vae_e_output] | |
| mean, logvar = np.split(moments, 2, axis=1) | |
| std = np.exp(logvar * 0.5) | |
| latents = (mean + std * np.random.randn(*mean.shape)) * 0.18215 | |
| noise = torch.randn(shape, dtype=dtype) | |
| #latents = scheduler.add_noise(init_latents, noise, timestep) | |
| latents = scheduler.add_noise(torch.from_numpy(latents), noise, timestep) | |
| else: | |
| latents = torch.randn(shape, dtype=dtype) | |
| # scale the initial noise by the standard deviation required by the scheduler | |
| return latents | |
| def get_w_embedding(self, w, embedding_dim=512, dtype=torch.float32): | |
| """ | |
| see https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298 | |
| Args: | |
| timesteps: torch.Tensor: generate embedding vectors at these timesteps | |
| embedding_dim: int: dimension of the embeddings to generate | |
| dtype: data type of the generated embeddings | |
| Returns: | |
| embedding vectors with shape `(len(timesteps), embedding_dim)` | |
| """ | |
| assert len(w.shape) == 1 | |
| w = w * 1000.0 | |
| half_dim = embedding_dim // 2 | |
| emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1) | |
| emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb) | |
| emb = w.to(dtype)[:, None] * emb[None, :] | |
| emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) | |
| if embedding_dim % 2 == 1: # zero pad | |
| emb = torch.nn.functional.pad(emb, (0, 1)) | |
| assert emb.shape == (w.shape[0], embedding_dim) | |
| return emb | |
| def __call__( | |
| self, | |
| prompt: Union[str, List[str]] = None, | |
| init_image: Optional[PIL.Image.Image] = None, | |
| strength: Optional[float] = 0.8, | |
| height: Optional[int] = 512, | |
| width: Optional[int] = 512, | |
| guidance_scale: float = 7.5, | |
| scheduler = None, | |
| num_images_per_prompt: Optional[int] = 1, | |
| latents: Optional[torch.FloatTensor] = None, | |
| num_inference_steps: int = 4, | |
| lcm_origin_steps: int = 50, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| model: Optional[Dict[str, any]] = None, | |
| seed: Optional[int] = 1234567, | |
| cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| callback = None, | |
| callback_userdata = None | |
| ): | |
| # 1. Define call parameters | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| if seed is not None: | |
| torch.manual_seed(seed) | |
| #print("After Step 1: batch size is ", batch_size) | |
| # do_classifier_free_guidance = guidance_scale > 0.0 | |
| # In LCM Implementation: cfg_noise = noise_cond + cfg_scale * (noise_cond - noise_uncond) , (cfg_scale > 0.0 using CFG) | |
| # 2. Encode input prompt | |
| prompt_embeds = self._encode_prompt( | |
| prompt, | |
| num_images_per_prompt, | |
| prompt_embeds=prompt_embeds, | |
| ) | |
| #print("After Step 2: prompt embeds is ", prompt_embeds) | |
| #print("After Step 2: scheduler is ", scheduler ) | |
| # 3. Prepare timesteps | |
| #scheduler.set_timesteps(num_inference_steps, original_inference_steps=lcm_origin_steps) | |
| latent_timestep = None | |
| if init_image: | |
| scheduler.set_timesteps(num_inference_steps, original_inference_steps=lcm_origin_steps) | |
| timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, scheduler) | |
| latent_timestep = timesteps[:1] | |
| else: | |
| scheduler.set_timesteps(num_inference_steps, original_inference_steps=lcm_origin_steps) | |
| timesteps = scheduler.timesteps | |
| #timesteps = scheduler.timesteps | |
| #latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) | |
| #print("timesteps: ", latent_timestep) | |
| #print("After Step 3: timesteps is ", timesteps) | |
| # 4. Prepare latent variable | |
| num_channels_latents = 4 | |
| latents = self.prepare_latents( | |
| init_image, | |
| latent_timestep, | |
| batch_size * num_images_per_prompt, | |
| num_channels_latents, | |
| height, | |
| width, | |
| prompt_embeds.dtype, | |
| scheduler, | |
| latents, | |
| ) | |
| latents = latents * scheduler.init_noise_sigma | |
| #print("After Step 4: ") | |
| bs = batch_size * num_images_per_prompt | |
| # 5. Get Guidance Scale Embedding | |
| w = torch.tensor(guidance_scale).repeat(bs) | |
| w_embedding = self.get_w_embedding(w, embedding_dim=256) | |
| #print("After Step 5: ") | |
| # 6. LCM MultiStep Sampling Loop: | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| if callback: | |
| callback(i+1, callback_userdata) | |
| ts = torch.full((bs,), t, dtype=torch.long) | |
| # model prediction (v-prediction, eps, x) | |
| model_pred = self.unet([latents, ts, prompt_embeds, w_embedding],share_inputs=True, share_outputs=True)[0] | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents, denoised = scheduler.step( | |
| torch.from_numpy(model_pred), t, latents, return_dict=False | |
| ) | |
| progress_bar.update() | |
| #print("After Step 6: ") | |
| vae_start = time.time() | |
| if not output_type == "latent": | |
| image = torch.from_numpy(self.vae_decoder(denoised / 0.18215, share_inputs=True, share_outputs=True)[0]) | |
| else: | |
| image = denoised | |
| print("Decoder Ended: ", time.time() - vae_start) | |
| #post_start = time.time() | |
| #if has_nsfw_concept is None: | |
| do_denormalize = [True] * image.shape[0] | |
| #else: | |
| # do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] | |
| #print ("After do_denormalize: image is ", image) | |
| image = self.image_processor.postprocess( | |
| image, output_type=output_type, do_denormalize=do_denormalize | |
| ) | |
| return image[0] | |
| class StableDiffusionEngineReferenceOnly(DiffusionPipeline): | |
| def __init__( | |
| self, | |
| #scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], | |
| model="bes-dev/stable-diffusion-v1-4-openvino", | |
| tokenizer="openai/clip-vit-large-patch14", | |
| device=["CPU","CPU","CPU"] | |
| ): | |
| #self.tokenizer = CLIPTokenizer.from_pretrained(tokenizer) | |
| try: | |
| self.tokenizer = CLIPTokenizer.from_pretrained(model,local_files_only=True) | |
| except: | |
| self.tokenizer = CLIPTokenizer.from_pretrained(tokenizer) | |
| self.tokenizer.save_pretrained(model) | |
| #self.scheduler = scheduler | |
| # models | |
| self.core = Core() | |
| self.core.set_property({'CACHE_DIR': os.path.join(model, 'cache')}) #adding caching to reduce init time | |
| # text features | |
| print("Text Device:",device[0]) | |
| self.text_encoder = self.core.compile_model(os.path.join(model, "text_encoder.xml"), device[0]) | |
| self._text_encoder_output = self.text_encoder.output(0) | |
| # diffusion | |
| print("unet_w Device:",device[1]) | |
| self.unet_w = self.core.compile_model(os.path.join(model, "unet_reference_write.xml"), device[1]) | |
| self._unet_w_output = self.unet_w.output(0) | |
| self.latent_shape = tuple(self.unet_w.inputs[0].shape)[1:] | |
| print("unet_r Device:",device[1]) | |
| self.unet_r = self.core.compile_model(os.path.join(model, "unet_reference_read.xml"), device[1]) | |
| self._unet_r_output = self.unet_r.output(0) | |
| # decoder | |
| print("Vae Device:",device[2]) | |
| self.vae_decoder = self.core.compile_model(os.path.join(model, "vae_decoder.xml"), device[2]) | |
| # encoder | |
| self.vae_encoder = self.core.compile_model(os.path.join(model, "vae_encoder.xml"), device[2]) | |
| self.init_image_shape = tuple(self.vae_encoder.inputs[0].shape)[2:] | |
| self._vae_d_output = self.vae_decoder.output(0) | |
| self._vae_e_output = self.vae_encoder.output(0) if self.vae_encoder is not None else None | |
| self.height = self.unet_w.input(0).shape[2] * 8 | |
| self.width = self.unet_w.input(0).shape[3] * 8 | |
| def __call__( | |
| self, | |
| prompt, | |
| image = None, | |
| negative_prompt=None, | |
| scheduler=None, | |
| strength = 1.0, | |
| num_inference_steps = 32, | |
| guidance_scale = 7.5, | |
| eta = 0.0, | |
| create_gif = False, | |
| model = None, | |
| callback = None, | |
| callback_userdata = None | |
| ): | |
| # extract condition | |
| text_input = self.tokenizer( | |
| prompt, | |
| padding="max_length", | |
| max_length=self.tokenizer.model_max_length, | |
| truncation=True, | |
| return_tensors="np", | |
| ) | |
| text_embeddings = self.text_encoder(text_input.input_ids)[self._text_encoder_output] | |
| # do classifier free guidance | |
| do_classifier_free_guidance = guidance_scale > 1.0 | |
| if do_classifier_free_guidance: | |
| if negative_prompt is None: | |
| uncond_tokens = [""] | |
| elif isinstance(negative_prompt, str): | |
| uncond_tokens = [negative_prompt] | |
| else: | |
| uncond_tokens = negative_prompt | |
| tokens_uncond = self.tokenizer( | |
| uncond_tokens, | |
| padding="max_length", | |
| max_length=self.tokenizer.model_max_length, #truncation=True, | |
| return_tensors="np" | |
| ) | |
| uncond_embeddings = self.text_encoder(tokens_uncond.input_ids)[self._text_encoder_output] | |
| text_embeddings = np.concatenate([uncond_embeddings, text_embeddings]) | |
| # set timesteps | |
| accepts_offset = "offset" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) | |
| extra_set_kwargs = {} | |
| if accepts_offset: | |
| extra_set_kwargs["offset"] = 1 | |
| scheduler.set_timesteps(num_inference_steps, **extra_set_kwargs) | |
| timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, scheduler) | |
| latent_timestep = timesteps[:1] | |
| ref_image = self.prepare_image( | |
| image=image, | |
| width=512, | |
| height=512, | |
| ) | |
| # get the initial random noise unless the user supplied it | |
| latents, meta = self.prepare_latents(None, latent_timestep, scheduler) | |
| #ref_image_latents, _ = self.prepare_latents(init_image, latent_timestep, scheduler) | |
| ref_image_latents = self.ov_prepare_ref_latents(ref_image) | |
| # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
| # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
| # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
| # and should be between [0, 1] | |
| accepts_eta = "eta" in set(inspect.signature(scheduler.step).parameters.keys()) | |
| extra_step_kwargs = {} | |
| if accepts_eta: | |
| extra_step_kwargs["eta"] = eta | |
| if create_gif: | |
| frames = [] | |
| for i, t in enumerate(self.progress_bar(timesteps)): | |
| if callback: | |
| callback(i, callback_userdata) | |
| # expand the latents if we are doing classifier free guidance | |
| latent_model_input = np.concatenate([latents] * 2) if do_classifier_free_guidance else latents | |
| latent_model_input = scheduler.scale_model_input(latent_model_input, t) | |
| # ref only part | |
| noise = randn_tensor( | |
| ref_image_latents.shape | |
| ) | |
| ref_xt = scheduler.add_noise( | |
| torch.from_numpy(ref_image_latents), | |
| noise, | |
| t.reshape( | |
| 1, | |
| ), | |
| ).numpy() | |
| ref_xt = np.concatenate([ref_xt] * 2) if do_classifier_free_guidance else ref_xt | |
| ref_xt = scheduler.scale_model_input(ref_xt, t) | |
| # MODE = "write" | |
| result_w_dict = self.unet_w([ | |
| ref_xt, | |
| t, | |
| text_embeddings | |
| ]) | |
| down_0_attn0 = result_w_dict["/unet/down_blocks.0/attentions.0/transformer_blocks.0/norm1/LayerNormalization_output_0"] | |
| down_0_attn1 = result_w_dict["/unet/down_blocks.0/attentions.1/transformer_blocks.0/norm1/LayerNormalization_output_0"] | |
| down_1_attn0 = result_w_dict["/unet/down_blocks.1/attentions.0/transformer_blocks.0/norm1/LayerNormalization_output_0"] | |
| down_1_attn1 = result_w_dict["/unet/down_blocks.1/attentions.1/transformer_blocks.0/norm1/LayerNormalization_output_0"] | |
| down_2_attn0 = result_w_dict["/unet/down_blocks.2/attentions.0/transformer_blocks.0/norm1/LayerNormalization_output_0"] | |
| down_2_attn1 = result_w_dict["/unet/down_blocks.2/attentions.1/transformer_blocks.0/norm1/LayerNormalization_output_0"] | |
| mid_attn0 = result_w_dict["/unet/mid_block/attentions.0/transformer_blocks.0/norm1/LayerNormalization_output_0"] | |
| up_1_attn0 = result_w_dict["/unet/up_blocks.1/attentions.0/transformer_blocks.0/norm1/LayerNormalization_output_0"] | |
| up_1_attn1 = result_w_dict["/unet/up_blocks.1/attentions.1/transformer_blocks.0/norm1/LayerNormalization_output_0"] | |
| up_1_attn2 = result_w_dict["/unet/up_blocks.1/attentions.2/transformer_blocks.0/norm1/LayerNormalization_output_0"] | |
| up_2_attn0 = result_w_dict["/unet/up_blocks.2/attentions.0/transformer_blocks.0/norm1/LayerNormalization_output_0"] | |
| up_2_attn1 = result_w_dict["/unet/up_blocks.2/attentions.1/transformer_blocks.0/norm1/LayerNormalization_output_0"] | |
| up_2_attn2 = result_w_dict["/unet/up_blocks.2/attentions.2/transformer_blocks.0/norm1/LayerNormalization_output_0"] | |
| up_3_attn0 = result_w_dict["/unet/up_blocks.3/attentions.0/transformer_blocks.0/norm1/LayerNormalization_output_0"] | |
| up_3_attn1 = result_w_dict["/unet/up_blocks.3/attentions.1/transformer_blocks.0/norm1/LayerNormalization_output_0"] | |
| up_3_attn2 = result_w_dict["/unet/up_blocks.3/attentions.2/transformer_blocks.0/norm1/LayerNormalization_output_0"] | |
| # MODE = "read" | |
| noise_pred = self.unet_r([ | |
| latent_model_input, t, text_embeddings, down_0_attn0, down_0_attn1, down_1_attn0, | |
| down_1_attn1, down_2_attn0, down_2_attn1, mid_attn0, up_1_attn0, up_1_attn1, up_1_attn2, | |
| up_2_attn0, up_2_attn1, up_2_attn2, up_3_attn0, up_3_attn1, up_3_attn2 | |
| ])[0] | |
| # perform guidance | |
| if do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_text = noise_pred[0], noise_pred[1] | |
| noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents = scheduler.step(torch.from_numpy(noise_pred), t, torch.from_numpy(latents), **extra_step_kwargs)["prev_sample"].numpy() | |
| if create_gif: | |
| frames.append(latents) | |
| if callback: | |
| callback(num_inference_steps, callback_userdata) | |
| # scale and decode the image latents with vae | |
| image = self.vae_decoder(latents)[self._vae_d_output] | |
| image = self.postprocess_image(image, meta) | |
| if create_gif: | |
| gif_folder=os.path.join(model,"../../../gif") | |
| if not os.path.exists(gif_folder): | |
| os.makedirs(gif_folder) | |
| for i in range(0,len(frames)): | |
| image = self.vae_decoder(frames[i])[self._vae_d_output] | |
| image = self.postprocess_image(image, meta) | |
| output = gif_folder + "/" + str(i).zfill(3) +".png" | |
| cv2.imwrite(output, image) | |
| with open(os.path.join(gif_folder, "prompt.json"), "w") as file: | |
| json.dump({"prompt": prompt}, file) | |
| frames_image = [Image.open(image) for image in glob.glob(f"{gif_folder}/*.png")] | |
| frame_one = frames_image[0] | |
| gif_file=os.path.join(gif_folder,"stable_diffusion.gif") | |
| frame_one.save(gif_file, format="GIF", append_images=frames_image, save_all=True, duration=100, loop=0) | |
| return image | |
| def ov_prepare_ref_latents(self, refimage, vae_scaling_factor=0.18215): | |
| #refimage = refimage.to(device=device, dtype=dtype) | |
| # encode the mask image into latents space so we can concatenate it to the latents | |
| moments = self.vae_encoder(refimage)[0] | |
| mean, logvar = np.split(moments, 2, axis=1) | |
| std = np.exp(logvar * 0.5) | |
| ref_image_latents = (mean + std * np.random.randn(*mean.shape)) | |
| ref_image_latents = vae_scaling_factor * ref_image_latents | |
| #ref_image_latents = scheduler.add_noise(torch.from_numpy(ref_image_latents), torch.from_numpy(noise), latent_timestep).numpy() | |
| # aligning device to prevent device errors when concating it with the latent model input | |
| #ref_image_latents = ref_image_latents.to(device=device, dtype=dtype) | |
| return ref_image_latents | |
| def prepare_latents(self, image:PIL.Image.Image = None, latent_timestep:torch.Tensor = None, scheduler = LMSDiscreteScheduler): | |
| """ | |
| Function for getting initial latents for starting generation | |
| Parameters: | |
| image (PIL.Image.Image, *optional*, None): | |
| Input image for generation, if not provided randon noise will be used as starting point | |
| latent_timestep (torch.Tensor, *optional*, None): | |
| Predicted by scheduler initial step for image generation, required for latent image mixing with nosie | |
| Returns: | |
| latents (np.ndarray): | |
| Image encoded in latent space | |
| """ | |
| latents_shape = (1, 4, self.height // 8, self.width // 8) | |
| noise = np.random.randn(*latents_shape).astype(np.float32) | |
| if image is None: | |
| #print("Image is NONE") | |
| # if we use LMSDiscreteScheduler, let's make sure latents are mulitplied by sigmas | |
| if isinstance(scheduler, LMSDiscreteScheduler): | |
| noise = noise * scheduler.sigmas[0].numpy() | |
| return noise, {} | |
| elif isinstance(scheduler, EulerDiscreteScheduler): | |
| noise = noise * scheduler.sigmas.max().numpy() | |
| return noise, {} | |
| else: | |
| return noise, {} | |
| input_image, meta = preprocess(image,self.height,self.width) | |
| moments = self.vae_encoder(input_image)[self._vae_e_output] | |
| mean, logvar = np.split(moments, 2, axis=1) | |
| std = np.exp(logvar * 0.5) | |
| latents = (mean + std * np.random.randn(*mean.shape)) * 0.18215 | |
| latents = scheduler.add_noise(torch.from_numpy(latents), torch.from_numpy(noise), latent_timestep).numpy() | |
| return latents, meta | |
| def postprocess_image(self, image:np.ndarray, meta:Dict): | |
| """ | |
| Postprocessing for decoded image. Takes generated image decoded by VAE decoder, unpad it to initila image size (if required), | |
| normalize and convert to [0, 255] pixels range. Optionally, convertes it from np.ndarray to PIL.Image format | |
| Parameters: | |
| image (np.ndarray): | |
| Generated image | |
| meta (Dict): | |
| Metadata obtained on latents preparing step, can be empty | |
| output_type (str, *optional*, pil): | |
| Output format for result, can be pil or numpy | |
| Returns: | |
| image (List of np.ndarray or PIL.Image.Image): | |
| Postprocessed images | |
| if "src_height" in meta: | |
| orig_height, orig_width = meta["src_height"], meta["src_width"] | |
| image = [cv2.resize(img, (orig_width, orig_height)) | |
| for img in image] | |
| return image | |
| """ | |
| if "padding" in meta: | |
| pad = meta["padding"] | |
| (_, end_h), (_, end_w) = pad[1:3] | |
| h, w = image.shape[2:] | |
| #print("image shape",image.shape[2:]) | |
| unpad_h = h - end_h | |
| unpad_w = w - end_w | |
| image = image[:, :, :unpad_h, :unpad_w] | |
| image = np.clip(image / 2 + 0.5, 0, 1) | |
| image = (image[0].transpose(1, 2, 0)[:, :, ::-1] * 255).astype(np.uint8) | |
| if "src_height" in meta: | |
| orig_height, orig_width = meta["src_height"], meta["src_width"] | |
| image = cv2.resize(image, (orig_width, orig_height)) | |
| return image | |
| #image = (image / 2 + 0.5).clip(0, 1) | |
| #image = (image[0].transpose(1, 2, 0)[:, :, ::-1] * 255).astype(np.uint8) | |
| def get_timesteps(self, num_inference_steps:int, strength:float, scheduler): | |
| """ | |
| Helper function for getting scheduler timesteps for generation | |
| In case of image-to-image generation, it updates number of steps according to strength | |
| Parameters: | |
| num_inference_steps (int): | |
| number of inference steps for generation | |
| strength (float): | |
| value between 0.0 and 1.0, that controls the amount of noise that is added to the input image. | |
| Values that approach 1.0 allow for lots of variations but will also produce images that are not semantically consistent with the input. | |
| """ | |
| # get the original timestep using init_timestep | |
| init_timestep = min(int(num_inference_steps * strength), num_inference_steps) | |
| t_start = max(num_inference_steps - init_timestep, 0) | |
| timesteps = scheduler.timesteps[t_start:] | |
| return timesteps, num_inference_steps - t_start | |
| def prepare_image( | |
| self, | |
| image, | |
| width, | |
| height, | |
| do_classifier_free_guidance=False, | |
| guess_mode=False, | |
| ): | |
| if not isinstance(image, np.ndarray): | |
| if isinstance(image, PIL.Image.Image): | |
| image = [image] | |
| if isinstance(image[0], PIL.Image.Image): | |
| images = [] | |
| for image_ in image: | |
| image_ = image_.convert("RGB") | |
| image_ = image_.resize((width, height), resample=PIL_INTERPOLATION["lanczos"]) | |
| image_ = np.array(image_) | |
| image_ = image_[None, :] | |
| images.append(image_) | |
| image = images | |
| image = np.concatenate(image, axis=0) | |
| image = np.array(image).astype(np.float32) / 255.0 | |
| image = (image - 0.5) / 0.5 | |
| image = image.transpose(0, 3, 1, 2) | |
| elif isinstance(image[0], np.ndarray): | |
| image = np.concatenate(image, dim=0) | |
| if do_classifier_free_guidance and not guess_mode: | |
| image = np.concatenate([image] * 2) | |
| return image | |
| def print_npu_turbo_art(): | |
| random_number = random.randint(1, 3) | |
| if random_number == 1: | |
| print(" ") | |
| print(" ___ ___ ___ ___ ___ ___ ") | |
| print(" /\ \ /\ \ /\ \ /\ \ /\ \ _____ /\ \ ") | |
| print(" \:\ \ /::\ \ \:\ \ ___ \:\ \ /::\ \ /::\ \ /::\ \ ") | |
| print(" \:\ \ /:/\:\__\ \:\ \ /\__\ \:\ \ /:/\:\__\ /:/\:\ \ /:/\:\ \ ") | |
| print(" _____\:\ \ /:/ /:/ / ___ \:\ \ /:/ / ___ \:\ \ /:/ /:/ / /:/ /::\__\ /:/ \:\ \ ") | |
| print(" /::::::::\__\ /:/_/:/ / /\ \ \:\__\ /:/__/ /\ \ \:\__\ /:/_/:/__/___ /:/_/:/\:|__| /:/__/ \:\__\ ") | |
| print(" \:\~~\~~\/__/ \:\/:/ / \:\ \ /:/ / /::\ \ \:\ \ /:/ / \:\/:::::/ / \:\/:/ /:/ / \:\ \ /:/ / ") | |
| print(" \:\ \ \::/__/ \:\ /:/ / /:/\:\ \ \:\ /:/ / \::/~~/~~~~ \::/_/:/ / \:\ /:/ / ") | |
| print(" \:\ \ \:\ \ \:\/:/ / \/__\:\ \ \:\/:/ / \:\~~\ \:\/:/ / \:\/:/ / ") | |
| print(" \:\__\ \:\__\ \::/ / \:\__\ \::/ / \:\__\ \::/ / \::/ / ") | |
| print(" \/__/ \/__/ \/__/ \/__/ \/__/ \/__/ \/__/ \/__/ ") | |
| print(" ") | |
| elif random_number == 2: | |
| print(" _ _ ____ _ _ _____ _ _ ____ ____ ___ ") | |
| print("| \ | | | _ \ | | | | |_ _| | | | | | _ \ | __ ) / _ \ ") | |
| print("| \| | | |_) | | | | | | | | | | | | |_) | | _ \ | | | |") | |
| print("| |\ | | __/ | |_| | | | | |_| | | _ < | |_) | | |_| |") | |
| print("|_| \_| |_| \___/ |_| \___/ |_| \_\ |____/ \___/ ") | |
| print(" ") | |
| else: | |
| print("") | |
| print(" ) ( ( ) ") | |
| print(" ( /( )\ ) * ) )\ ) ( ( /( ") | |
| print(" )\()) (()/( ( ` ) /( ( (()/( ( )\ )\()) ") | |
| print("((_)\ /(_)) )\ ( )(_)) )\ /(_)) )((_) ((_)\ ") | |
| print(" _((_) (_)) _ ((_) (_(_()) _ ((_) (_)) ((_)_ ((_) ") | |
| print("| \| | | _ \ | | | | |_ _| | | | | | _ \ | _ ) / _ \ ") | |
| print("| .` | | _/ | |_| | | | | |_| | | / | _ \ | (_) | ") | |
| print("|_|\_| |_| \___/ |_| \___/ |_|_\ |___/ \___/ ") | |
| print(" ") | |