Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,4 +1,7 @@
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
|
| 3 |
from off_topic import OffTopicDetector, Translator
|
| 4 |
|
|
@@ -7,38 +10,74 @@ translator = Translator("Helsinki-NLP/opus-mt-roa-en")
|
|
| 7 |
detector = OffTopicDetector("openai/clip-vit-base-patch32", image_size="V", translator=translator)
|
| 8 |
|
| 9 |
|
| 10 |
-
def
|
| 11 |
images, domain, probas, valid_probas, invalid_probas = detector.predict_probas_item(item_id, use_title=use_title)
|
| 12 |
valid_images = [x for i, x in enumerate(images) if valid_probas[i].squeeze() >= threshold]
|
| 13 |
invalid_images = [x for i, x in enumerate(images) if valid_probas[i].squeeze() < threshold]
|
| 14 |
return f"## Domain: {domain}", valid_images, invalid_images
|
| 15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
with gr.Blocks() as demo:
|
| 18 |
gr.Markdown("""
|
| 19 |
# Off topic image detector
|
| 20 |
### This app takes an item ID and classifies its pictures as valid/invalid depending on whether they relate to the domain in which it's been listed.
|
| 21 |
Input an item ID or select one of the preloaded examples below.""")
|
| 22 |
-
with gr.
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
|
| 44 |
demo.launch()
|
|
|
|
| 1 |
+
from typing import Optional
|
| 2 |
+
|
| 3 |
import gradio as gr
|
| 4 |
+
from PIL import Image
|
| 5 |
|
| 6 |
from off_topic import OffTopicDetector, Translator
|
| 7 |
|
|
|
|
| 10 |
detector = OffTopicDetector("openai/clip-vit-base-patch32", image_size="V", translator=translator)
|
| 11 |
|
| 12 |
|
| 13 |
+
def validate_item(item_id: str, use_title: bool, threshold: float):
|
| 14 |
images, domain, probas, valid_probas, invalid_probas = detector.predict_probas_item(item_id, use_title=use_title)
|
| 15 |
valid_images = [x for i, x in enumerate(images) if valid_probas[i].squeeze() >= threshold]
|
| 16 |
invalid_images = [x for i, x in enumerate(images) if valid_probas[i].squeeze() < threshold]
|
| 17 |
return f"## Domain: {domain}", valid_images, invalid_images
|
| 18 |
|
| 19 |
+
def validate_images(img_url_1, img_url_2, img_url_3, domain: str, title: str, threshold: float):
|
| 20 |
+
img_urls = [url for url in [img_url_1, img_url_2, img_url_3] if url != ""]
|
| 21 |
+
if title == "":
|
| 22 |
+
title = None
|
| 23 |
+
images, domain, probas, valid_probas, invalid_probas = detector.predict_probas_url(img_urls, domain, title)
|
| 24 |
+
valid_images = [x for i, x in enumerate(images) if valid_probas[i].squeeze() >= threshold]
|
| 25 |
+
invalid_images = [x for i, x in enumerate(images) if valid_probas[i].squeeze() < threshold]
|
| 26 |
+
return f"## Domain: {domain}", valid_images, invalid_images
|
| 27 |
+
|
| 28 |
|
| 29 |
with gr.Blocks() as demo:
|
| 30 |
gr.Markdown("""
|
| 31 |
# Off topic image detector
|
| 32 |
### This app takes an item ID and classifies its pictures as valid/invalid depending on whether they relate to the domain in which it's been listed.
|
| 33 |
Input an item ID or select one of the preloaded examples below.""")
|
| 34 |
+
with gr.Tab("From item_id"):
|
| 35 |
+
with gr.Row():
|
| 36 |
+
item_id = gr.Textbox(label="Item ID")
|
| 37 |
+
with gr.Column():
|
| 38 |
+
use_title = gr.Checkbox(label="Use translated item title", value=True)
|
| 39 |
+
threshold = gr.Number(label="Threshold", value=0.25, precision=2)
|
| 40 |
+
submit = gr.Button("Submit")
|
| 41 |
+
gr.HTML("<hr>")
|
| 42 |
+
domain = gr.Markdown()
|
| 43 |
+
valid = gr.Gallery(label="Valid images").style(grid=[1, 2, 3], height="auto")
|
| 44 |
+
gr.HTML("<hr>")
|
| 45 |
+
invalid = gr.Gallery(label="Invalid images").style(grid=[1, 2, 3], height="auto")
|
| 46 |
+
submit.click(inputs=[item_id, use_title, threshold], outputs=[domain, valid, invalid], fn=validate_item)
|
| 47 |
+
gr.HTML("<hr>")
|
| 48 |
+
gr.Examples(
|
| 49 |
+
examples=[["MLC572974424", True, 0.25], ["MLU449951849", True, 0.25], ["MLA1293465558", True, 0.25],
|
| 50 |
+
["MLB3184663685", True, 0.25], ["MLC1392230619", True, 0.25], ["MCO546152796", True, 0.25]],
|
| 51 |
+
inputs=[item_id, use_title, threshold],
|
| 52 |
+
outputs=[domain, valid, invalid],
|
| 53 |
+
fn=validate,
|
| 54 |
+
cache_examples=True,
|
| 55 |
+
)
|
| 56 |
+
with gr.Tab("From image urls"):
|
| 57 |
+
with gr.Row():
|
| 58 |
+
with gr.Column():
|
| 59 |
+
pic_url_1 = gr.Textbox(label="Picture URL")
|
| 60 |
+
pic_url_1 = gr.Textbox(label="Picture URL")
|
| 61 |
+
pic_url_1 = gr.Textbox(label="Picture URL")
|
| 62 |
+
with gr.Column():
|
| 63 |
+
domain = gr.Textbox(label="Domain name", placeholder="Required")
|
| 64 |
+
title = gr.Textbox(label="Item title", placeholder="Optional")
|
| 65 |
+
threshold = gr.Number(label="Threshold", value=0.25, precision=2)
|
| 66 |
+
submit = gr.Button("Submit")
|
| 67 |
+
gr.HTML("<hr>")
|
| 68 |
+
domain = gr.Markdown()
|
| 69 |
+
valid = gr.Gallery(label="Valid images").style(grid=[1, 2, 3], height="auto")
|
| 70 |
+
gr.HTML("<hr>")
|
| 71 |
+
invalid = gr.Gallery(label="Invalid images").style(grid=[1, 2, 3], height="auto")
|
| 72 |
+
submit.click(inputs=[pic_url_1, pic_url_2, pic_url_3, domain, title, threshold], outputs=[domain, valid, invalid], fn=validate_images)
|
| 73 |
+
gr.HTML("<hr>")
|
| 74 |
+
#gr.Examples(
|
| 75 |
+
# examples=[["MLC572974424", True, 0.25], ["MLU449951849", True, 0.25], ["MLA1293465558", True, 0.25],
|
| 76 |
+
# ["MLB3184663685", True, 0.25], ["MLC1392230619", True, 0.25], ["MCO546152796", True, 0.25]],
|
| 77 |
+
# inputs=[item_id, use_title, threshold],
|
| 78 |
+
# outputs=[domain, valid, invalid],
|
| 79 |
+
# fn=validate,
|
| 80 |
+
# cache_examples=True,
|
| 81 |
+
#)
|
| 82 |
|
| 83 |
demo.launch()
|