Spaces:
Runtime error
Runtime error
| #!/usr/bin/env python3 | |
| # -*- encoding: utf-8 -*- | |
| # Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved. | |
| # MIT License (https://opensource.org/licenses/MIT) | |
| import copy | |
| import json | |
| import logging | |
| import os.path | |
| import random | |
| import re | |
| import string | |
| import time | |
| import numpy as np | |
| import torch | |
| from funasr.download.download_model_from_hub import download_model | |
| from funasr.download.file import download_from_url | |
| from funasr.register import tables | |
| from funasr.train_utils.load_pretrained_model import load_pretrained_model | |
| from funasr.train_utils.set_all_random_seed import set_all_random_seed | |
| from funasr.utils import export_utils, misc | |
| from funasr.utils.load_utils import load_audio_text_image_video, load_bytes | |
| from funasr.utils.misc import deep_update | |
| from funasr.utils.timestamp_tools import timestamp_sentence, timestamp_sentence_en | |
| from tqdm import tqdm | |
| from .vad_utils import merge_vad, slice_padding_audio_samples | |
| try: | |
| from funasr.models.campplus.cluster_backend import ClusterBackend | |
| from funasr.models.campplus.utils import distribute_spk, postprocess, sv_chunk | |
| except: | |
| pass | |
| def prepare_data_iterator(data_in, input_len=None, data_type=None, key=None): | |
| """ """ | |
| data_list = [] | |
| key_list = [] | |
| filelist = [".scp", ".txt", ".json", ".jsonl", ".text"] | |
| chars = string.ascii_letters + string.digits | |
| if isinstance(data_in, str): | |
| if data_in.startswith("http://") or data_in.startswith("https://"): # url | |
| data_in = download_from_url(data_in) | |
| if isinstance(data_in, str) and os.path.exists( | |
| data_in | |
| ): # wav_path; filelist: wav.scp, file.jsonl;text.txt; | |
| _, file_extension = os.path.splitext(data_in) | |
| file_extension = file_extension.lower() | |
| if file_extension in filelist: # filelist: wav.scp, file.jsonl;text.txt; | |
| with open(data_in, encoding="utf-8") as fin: | |
| for line in fin: | |
| key = "rand_key_" + "".join(random.choice(chars) for _ in range(13)) | |
| if data_in.endswith( | |
| ".jsonl" | |
| ): # file.jsonl: json.dumps({"source": data}) | |
| lines = json.loads(line.strip()) | |
| data = lines["source"] | |
| key = data["key"] if "key" in data else key | |
| else: # filelist, wav.scp, text.txt: id \t data or data | |
| lines = line.strip().split(maxsplit=1) | |
| data = lines[1] if len(lines) > 1 else lines[0] | |
| key = lines[0] if len(lines) > 1 else key | |
| data_list.append(data) | |
| key_list.append(key) | |
| else: | |
| if key is None: | |
| # key = "rand_key_" + "".join(random.choice(chars) for _ in range(13)) | |
| key = misc.extract_filename_without_extension(data_in) | |
| data_list = [data_in] | |
| key_list = [key] | |
| elif isinstance(data_in, (list, tuple)): | |
| if data_type is not None and isinstance( | |
| data_type, (list, tuple) | |
| ): # mutiple inputs | |
| data_list_tmp = [] | |
| for data_in_i, data_type_i in zip(data_in, data_type): | |
| key_list, data_list_i = prepare_data_iterator( | |
| data_in=data_in_i, data_type=data_type_i | |
| ) | |
| data_list_tmp.append(data_list_i) | |
| data_list = [] | |
| for item in zip(*data_list_tmp): | |
| data_list.append(item) | |
| else: | |
| # [audio sample point, fbank, text] | |
| data_list = data_in | |
| key_list = [] | |
| for data_i in data_in: | |
| if isinstance(data_i, str) and os.path.exists(data_i): | |
| key = misc.extract_filename_without_extension(data_i) | |
| else: | |
| if key is None: | |
| key = "rand_key_" + "".join( | |
| random.choice(chars) for _ in range(13) | |
| ) | |
| key_list.append(key) | |
| else: # raw text; audio sample point, fbank; bytes | |
| if isinstance(data_in, bytes): # audio bytes | |
| data_in = load_bytes(data_in) | |
| if key is None: | |
| key = "rand_key_" + "".join(random.choice(chars) for _ in range(13)) | |
| data_list = [data_in] | |
| key_list = [key] | |
| return key_list, data_list | |
| class AutoModel: | |
| def __init__(self, **kwargs): | |
| try: | |
| from funasr.utils.version_checker import check_for_update | |
| print( | |
| "Check update of funasr, and it would cost few times. You may disable it by set `disable_update=True` in AutoModel" | |
| ) | |
| check_for_update(disable=kwargs.get("disable_update", False)) | |
| except: | |
| pass | |
| log_level = getattr(logging, kwargs.get("log_level", "INFO").upper()) | |
| logging.basicConfig(level=log_level) | |
| model, kwargs = self.build_model(**kwargs) | |
| # if vad_model is not None, build vad model else None | |
| vad_model = kwargs.get("vad_model", None) | |
| vad_kwargs = ( | |
| {} if kwargs.get("vad_kwargs", {}) is None else kwargs.get("vad_kwargs", {}) | |
| ) | |
| if vad_model is not None: | |
| logging.info("Building VAD model.") | |
| vad_kwargs["model"] = vad_model | |
| vad_kwargs["model_revision"] = kwargs.get("vad_model_revision", "master") | |
| vad_kwargs["device"] = kwargs["device"] | |
| vad_model, vad_kwargs = self.build_model(**vad_kwargs) | |
| # if punc_model is not None, build punc model else None | |
| punc_model = kwargs.get("punc_model", None) | |
| punc_kwargs = ( | |
| {} | |
| if kwargs.get("punc_kwargs", {}) is None | |
| else kwargs.get("punc_kwargs", {}) | |
| ) | |
| if punc_model is not None: | |
| logging.info("Building punc model.") | |
| punc_kwargs["model"] = punc_model | |
| punc_kwargs["model_revision"] = kwargs.get("punc_model_revision", "master") | |
| punc_kwargs["device"] = kwargs["device"] | |
| punc_model, punc_kwargs = self.build_model(**punc_kwargs) | |
| # if spk_model is not None, build spk model else None | |
| spk_model = kwargs.get("spk_model", None) | |
| spk_kwargs = ( | |
| {} if kwargs.get("spk_kwargs", {}) is None else kwargs.get("spk_kwargs", {}) | |
| ) | |
| if spk_model is not None: | |
| logging.info("Building SPK model.") | |
| spk_kwargs["model"] = spk_model | |
| spk_kwargs["model_revision"] = kwargs.get("spk_model_revision", "master") | |
| spk_kwargs["device"] = kwargs["device"] | |
| spk_model, spk_kwargs = self.build_model(**spk_kwargs) | |
| self.cb_model = ClusterBackend().to(kwargs["device"]) | |
| spk_mode = kwargs.get("spk_mode", "punc_segment") | |
| if spk_mode not in ["default", "vad_segment", "punc_segment"]: | |
| logging.error( | |
| "spk_mode should be one of default, vad_segment and punc_segment." | |
| ) | |
| self.spk_mode = spk_mode | |
| self.kwargs = kwargs | |
| self.model = model | |
| self.vad_model = vad_model | |
| self.vad_kwargs = vad_kwargs | |
| self.punc_model = punc_model | |
| self.punc_kwargs = punc_kwargs | |
| self.spk_model = spk_model | |
| self.spk_kwargs = spk_kwargs | |
| self.model_path = kwargs.get("model_path") | |
| def build_model(**kwargs): | |
| assert "model" in kwargs | |
| if "model_conf" not in kwargs: | |
| logging.info( | |
| "download models from model hub: {}".format(kwargs.get("hub", "ms")) | |
| ) | |
| kwargs = download_model(**kwargs) | |
| set_all_random_seed(kwargs.get("seed", 0)) | |
| device = kwargs.get("device", "cuda") | |
| if not torch.cuda.is_available() or kwargs.get("ngpu", 1) == 0: | |
| device = "cpu" | |
| kwargs["batch_size"] = 1 | |
| kwargs["device"] = device | |
| torch.set_num_threads(kwargs.get("ncpu", 4)) | |
| # build tokenizer | |
| tokenizer = kwargs.get("tokenizer", None) | |
| if tokenizer is not None: | |
| tokenizer_class = tables.tokenizer_classes.get(tokenizer) | |
| tokenizer = tokenizer_class(**kwargs.get("tokenizer_conf", {})) | |
| kwargs["token_list"] = ( | |
| tokenizer.token_list if hasattr(tokenizer, "token_list") else None | |
| ) | |
| kwargs["token_list"] = ( | |
| tokenizer.get_vocab() | |
| if hasattr(tokenizer, "get_vocab") | |
| else kwargs["token_list"] | |
| ) | |
| vocab_size = ( | |
| len(kwargs["token_list"]) if kwargs["token_list"] is not None else -1 | |
| ) | |
| if vocab_size == -1 and hasattr(tokenizer, "get_vocab_size"): | |
| vocab_size = tokenizer.get_vocab_size() | |
| else: | |
| vocab_size = -1 | |
| kwargs["tokenizer"] = tokenizer | |
| # build frontend | |
| frontend = kwargs.get("frontend", None) | |
| kwargs["input_size"] = None | |
| if frontend is not None: | |
| frontend_class = tables.frontend_classes.get(frontend) | |
| frontend = frontend_class(**kwargs.get("frontend_conf", {})) | |
| kwargs["input_size"] = ( | |
| frontend.output_size() if hasattr(frontend, "output_size") else None | |
| ) | |
| kwargs["frontend"] = frontend | |
| # build model | |
| model_class = tables.model_classes.get(kwargs["model"]) | |
| assert model_class is not None, f'{kwargs["model"]} is not registered' | |
| model_conf = {} | |
| deep_update(model_conf, kwargs.get("model_conf", {})) | |
| deep_update(model_conf, kwargs) | |
| model = model_class(**model_conf, vocab_size=vocab_size) | |
| # init_param | |
| init_param = kwargs.get("init_param", None) | |
| if init_param is not None: | |
| if os.path.exists(init_param): | |
| logging.info(f"Loading pretrained params from {init_param}") | |
| load_pretrained_model( | |
| model=model, | |
| path=init_param, | |
| ignore_init_mismatch=kwargs.get("ignore_init_mismatch", True), | |
| oss_bucket=kwargs.get("oss_bucket", None), | |
| scope_map=kwargs.get("scope_map", []), | |
| excludes=kwargs.get("excludes", None), | |
| ) | |
| else: | |
| print(f"error, init_param does not exist!: {init_param}") | |
| # fp16 | |
| if kwargs.get("fp16", False): | |
| model.to(torch.float16) | |
| elif kwargs.get("bf16", False): | |
| model.to(torch.bfloat16) | |
| model.to(device) | |
| if not kwargs.get("disable_log", True): | |
| tables.print() | |
| return model, kwargs | |
| def __call__(self, *args, **cfg): | |
| kwargs = self.kwargs | |
| deep_update(kwargs, cfg) | |
| res = self.model(*args, kwargs) | |
| return res | |
| def generate(self, input, input_len=None, **cfg): | |
| if self.vad_model is None: | |
| return self.inference(input, input_len=input_len, **cfg) | |
| else: | |
| return self.inference_with_vad(input, input_len=input_len, **cfg) | |
| def inference( | |
| self, input, input_len=None, model=None, kwargs=None, key=None, **cfg | |
| ): | |
| kwargs = self.kwargs if kwargs is None else kwargs | |
| if "cache" in kwargs: | |
| kwargs.pop("cache") | |
| deep_update(kwargs, cfg) | |
| model = self.model if model is None else model | |
| model.eval() | |
| batch_size = kwargs.get("batch_size", 1) | |
| # if kwargs.get("device", "cpu") == "cpu": | |
| # batch_size = 1 | |
| key_list, data_list = prepare_data_iterator( | |
| input, input_len=input_len, data_type=kwargs.get("data_type", None), key=key | |
| ) | |
| speed_stats = {} | |
| asr_result_list = [] | |
| num_samples = len(data_list) | |
| disable_pbar = self.kwargs.get("disable_pbar", False) | |
| pbar = ( | |
| tqdm(colour="blue", total=num_samples, dynamic_ncols=True) | |
| if not disable_pbar | |
| else None | |
| ) | |
| time_speech_total = 0.0 | |
| time_escape_total = 0.0 | |
| for beg_idx in range(0, num_samples, batch_size): | |
| end_idx = min(num_samples, beg_idx + batch_size) | |
| data_batch = data_list[beg_idx:end_idx] | |
| key_batch = key_list[beg_idx:end_idx] | |
| batch = {"data_in": data_batch, "key": key_batch} | |
| if (end_idx - beg_idx) == 1 and kwargs.get( | |
| "data_type", None | |
| ) == "fbank": # fbank | |
| batch["data_in"] = data_batch[0] | |
| batch["data_lengths"] = input_len | |
| time1 = time.perf_counter() | |
| with torch.no_grad(): | |
| res = model.inference(**batch, **kwargs) | |
| if isinstance(res, (list, tuple)): | |
| results = res[0] if len(res) > 0 else [{"text": ""}] | |
| meta_data = res[1] if len(res) > 1 else {} | |
| time2 = time.perf_counter() | |
| asr_result_list.extend(results) | |
| # batch_data_time = time_per_frame_s * data_batch_i["speech_lengths"].sum().item() | |
| batch_data_time = meta_data.get("batch_data_time", -1) | |
| time_escape = time2 - time1 | |
| speed_stats["load_data"] = meta_data.get("load_data", 0.0) | |
| speed_stats["extract_feat"] = meta_data.get("extract_feat", 0.0) | |
| speed_stats["forward"] = f"{time_escape:0.3f}" | |
| speed_stats["batch_size"] = f"{len(results)}" | |
| speed_stats["rtf"] = f"{(time_escape) / batch_data_time:0.3f}" | |
| description = f"{speed_stats}, " | |
| if pbar: | |
| pbar.update(end_idx - beg_idx) | |
| pbar.set_description(description) | |
| time_speech_total += batch_data_time | |
| time_escape_total += time_escape | |
| if pbar: | |
| # pbar.update(1) | |
| pbar.set_description(f"rtf_avg: {time_escape_total/time_speech_total:0.3f}") | |
| torch.cuda.empty_cache() | |
| return asr_result_list | |
| def vad(self, input, input_len=None, **cfg): | |
| kwargs = self.kwargs | |
| # step.1: compute the vad model | |
| deep_update(self.vad_kwargs, cfg) | |
| beg_vad = time.time() | |
| res = self.inference( | |
| input, | |
| input_len=input_len, | |
| model=self.vad_model, | |
| kwargs=self.vad_kwargs, | |
| **cfg, | |
| ) | |
| end_vad = time.time() | |
| # FIX(gcf): concat the vad clips for sense vocie model for better aed | |
| if cfg.get("merge_vad", False): | |
| for i in range(len(res)): | |
| res[i]["value"] = merge_vad( | |
| res[i]["value"], kwargs.get("merge_length_s", 15) * 1000 | |
| ) | |
| elapsed = end_vad - beg_vad | |
| return elapsed, res | |
| def inference_with_vadres(self, input, vad_res, input_len=None, **cfg): | |
| kwargs = self.kwargs | |
| # step.2 compute asr model | |
| model = self.model | |
| deep_update(kwargs, cfg) | |
| batch_size = max(int(kwargs.get("batch_size_s", 300)) * 1000, 1) | |
| batch_size_threshold_ms = int(kwargs.get("batch_size_threshold_s", 60)) * 1000 | |
| kwargs["batch_size"] = batch_size | |
| key_list, data_list = prepare_data_iterator( | |
| input, input_len=input_len, data_type=kwargs.get("data_type", None) | |
| ) | |
| results_ret_list = [] | |
| time_speech_total_all_samples = 1e-6 | |
| beg_total = time.time() | |
| pbar_total = ( | |
| tqdm(colour="red", total=len(vad_res), dynamic_ncols=True) | |
| if not kwargs.get("disable_pbar", False) | |
| else None | |
| ) | |
| for i in range(len(vad_res)): | |
| key = vad_res[i]["key"] | |
| vadsegments = vad_res[i]["value"] | |
| input_i = data_list[i] | |
| fs = kwargs["frontend"].fs if hasattr(kwargs["frontend"], "fs") else 16000 | |
| speech = load_audio_text_image_video( | |
| input_i, fs=fs, audio_fs=kwargs.get("fs", 16000) | |
| ) | |
| speech_lengths = len(speech) | |
| n = len(vadsegments) | |
| data_with_index = [(vadsegments[i], i) for i in range(n)] | |
| sorted_data = sorted(data_with_index, key=lambda x: x[0][1] - x[0][0]) | |
| results_sorted = [] | |
| if not len(sorted_data): | |
| results_ret_list.append({"key": key, "text": "", "timestamp": []}) | |
| logging.info("decoding, utt: {}, empty speech".format(key)) | |
| continue | |
| if len(sorted_data) > 0 and len(sorted_data[0]) > 0: | |
| batch_size = max( | |
| batch_size, sorted_data[0][0][1] - sorted_data[0][0][0] | |
| ) | |
| if kwargs["device"] == "cpu": | |
| batch_size = 0 | |
| beg_idx = 0 | |
| beg_asr_total = time.time() | |
| time_speech_total_per_sample = speech_lengths / 16000 | |
| time_speech_total_all_samples += time_speech_total_per_sample | |
| # pbar_sample = tqdm(colour="blue", total=n, dynamic_ncols=True) | |
| all_segments = [] | |
| max_len_in_batch = 0 | |
| end_idx = 1 | |
| for j, _ in enumerate(range(0, n)): | |
| # pbar_sample.update(1) | |
| sample_length = sorted_data[j][0][1] - sorted_data[j][0][0] | |
| potential_batch_length = max(max_len_in_batch, sample_length) * ( | |
| j + 1 - beg_idx | |
| ) | |
| # batch_size_ms_cum += sorted_data[j][0][1] - sorted_data[j][0][0] | |
| if ( | |
| j < n - 1 | |
| and sample_length < batch_size_threshold_ms | |
| and potential_batch_length < batch_size | |
| ): | |
| max_len_in_batch = max(max_len_in_batch, sample_length) | |
| end_idx += 1 | |
| continue | |
| speech_j, speech_lengths_j, intervals = slice_padding_audio_samples( | |
| speech, speech_lengths, sorted_data[beg_idx:end_idx] | |
| ) | |
| results = self.inference( | |
| speech_j, input_len=None, model=model, kwargs=kwargs, **cfg | |
| ) | |
| for _b in range(len(speech_j)): | |
| results[_b]["interval"] = intervals[_b] | |
| if self.spk_model is not None: | |
| # compose vad segments: [[start_time_sec, end_time_sec, speech], [...]] | |
| for _b in range(len(speech_j)): | |
| vad_segments = [ | |
| [ | |
| sorted_data[beg_idx:end_idx][_b][0][0] / 1000.0, | |
| sorted_data[beg_idx:end_idx][_b][0][1] / 1000.0, | |
| np.array(speech_j[_b]), | |
| ] | |
| ] | |
| segments = sv_chunk(vad_segments) | |
| all_segments.extend(segments) | |
| speech_b = [i[2] for i in segments] | |
| spk_res = self.inference( | |
| speech_b, | |
| input_len=None, | |
| model=self.spk_model, | |
| kwargs=kwargs, | |
| **cfg, | |
| ) | |
| results[_b]["spk_embedding"] = spk_res[0]["spk_embedding"] | |
| beg_idx = end_idx | |
| end_idx += 1 | |
| max_len_in_batch = sample_length | |
| if len(results) < 1: | |
| continue | |
| results_sorted.extend(results) | |
| # end_asr_total = time.time() | |
| # time_escape_total_per_sample = end_asr_total - beg_asr_total | |
| # pbar_sample.update(1) | |
| # pbar_sample.set_description(f"rtf_avg_per_sample: {time_escape_total_per_sample / time_speech_total_per_sample:0.3f}, " | |
| # f"time_speech_total_per_sample: {time_speech_total_per_sample: 0.3f}, " | |
| # f"time_escape_total_per_sample: {time_escape_total_per_sample:0.3f}") | |
| restored_data = [0] * n | |
| for j in range(n): | |
| index = sorted_data[j][1] | |
| cur = results_sorted[j] | |
| pattern = r"<\|([^|]+)\|>" | |
| emotion_string = re.findall(pattern, cur["text"]) | |
| cur["text"] = re.sub(pattern, "", cur["text"]) | |
| cur["emo"] = "".join([f"<|{t}|>" for t in emotion_string]) | |
| if self.punc_model is not None and len(cur["text"].strip()) > 0: | |
| deep_update(self.punc_kwargs, cfg) | |
| punc_res = self.inference( | |
| cur["text"], | |
| model=self.punc_model, | |
| kwargs=self.punc_kwargs, | |
| **cfg, | |
| ) | |
| cur["text"] = punc_res[0]["text"] | |
| restored_data[index] = cur | |
| end_asr_total = time.time() | |
| time_escape_total_per_sample = end_asr_total - beg_asr_total | |
| if pbar_total: | |
| pbar_total.update(1) | |
| pbar_total.set_description( | |
| f"rtf_avg: {time_escape_total_per_sample / time_speech_total_per_sample:0.3f}, " | |
| f"time_speech: {time_speech_total_per_sample: 0.3f}, " | |
| f"time_escape: {time_escape_total_per_sample:0.3f}" | |
| ) | |
| # end_total = time.time() | |
| # time_escape_total_all_samples = end_total - beg_total | |
| # print(f"rtf_avg_all: {time_escape_total_all_samples / time_speech_total_all_samples:0.3f}, " | |
| # f"time_speech_all: {time_speech_total_all_samples: 0.3f}, " | |
| # f"time_escape_all: {time_escape_total_all_samples:0.3f}") | |
| return restored_data | |
| def export(self, input=None, **cfg): | |
| """ | |
| :param input: | |
| :param type: | |
| :param quantize: | |
| :param fallback_num: | |
| :param calib_num: | |
| :param opset_version: | |
| :param cfg: | |
| :return: | |
| """ | |
| device = cfg.get("device", "cpu") | |
| model = self.model.to(device=device) | |
| kwargs = self.kwargs | |
| deep_update(kwargs, cfg) | |
| kwargs["device"] = device | |
| del kwargs["model"] | |
| model.eval() | |
| type = kwargs.get("type", "onnx") | |
| key_list, data_list = prepare_data_iterator( | |
| input, input_len=None, data_type=kwargs.get("data_type", None), key=None | |
| ) | |
| with torch.no_grad(): | |
| export_dir = export_utils.export(model=model, data_in=data_list, **kwargs) | |
| return export_dir | |