Spaces:
Build error
Build error
| import streamlit as st | |
| from transformers import AutoTokenizer, AutoModelForCausalLM | |
| import torch | |
| import os | |
| # Retrieve the Hugging Face token from environment variables | |
| hf_token = os.environ.get("HF_TOKEN") | |
| if not hf_token: | |
| st.error("Hugging Face token not found. Please add your HF_TOKEN to the Space secrets.") | |
| st.stop() | |
| # Load models and tokenizers | |
| def load_model_and_tokenizer(model_name): | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| model = AutoModelForCausalLM.from_pretrained(model_name) | |
| return model, tokenizer | |
| model_8b, tokenizer_8b = load_model_and_tokenizer("meta-llama/Meta-Llama-3.1-8B") | |
| model_8b_instruct, tokenizer_8b_instruct = load_model_and_tokenizer("meta-llama/Meta-Llama-3.1-8B-Instruct") | |
| def generate_text(model, tokenizer, prompt, max_length=100): | |
| inputs = tokenizer(prompt, return_tensors="pt") | |
| with torch.no_grad(): | |
| outputs = model.generate(**inputs, max_length=max_length, num_return_sequences=1) | |
| return tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| st.title("LLaMA-3.1-8B vs LLaMA-3.1-8B-Instruct Comparison") | |
| prompt = st.text_area("Enter your prompt:", height=100) | |
| max_length = st.slider("Max output length:", min_value=50, max_value=500, value=100) | |
| if st.button("Generate"): | |
| if prompt: | |
| col1, col2 = st.columns(2) | |
| with col1: | |
| st.subheader("LLaMA-3.1-8B Output") | |
| output_8b = generate_text(model_8b, tokenizer_8b, prompt, max_length) | |
| st.write(output_8b) | |
| with col2: | |
| st.subheader("LLaMA-3.1-8B-Instruct Output") | |
| output_8b_instruct = generate_text(model_8b_instruct, tokenizer_8b_instruct, prompt, max_length) | |
| st.write(output_8b_instruct) | |
| else: | |
| st.warning("Please enter a prompt.") |