Spaces:
Sleeping
Sleeping
Commit
·
abe84f3
1
Parent(s):
987f571
feature: Added prediction and model loading methods
Browse files- images/.gitkeep +0 -0
- notebooks/predict.ipynb +0 -0
- src/predict.py +51 -0
images/.gitkeep
ADDED
|
File without changes
|
notebooks/predict.ipynb
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
src/predict.py
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
# coding: utf-8
|
| 3 |
+
import torch
|
| 4 |
+
from torch import nn
|
| 5 |
+
import numpy as np
|
| 6 |
+
|
| 7 |
+
import plotly.express as px
|
| 8 |
+
from plotly.subplots import make_subplots
|
| 9 |
+
|
| 10 |
+
from trainer import LitTrainer
|
| 11 |
+
from models import CNN
|
| 12 |
+
from dataset import DatasetMNIST, load_mnist
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def load_pl_net(path="../checkpoints/lightning_logs/version_26/checkpoints/epoch=9-step=1000.ckpt"):
|
| 16 |
+
pl_net = LitTrainer.load_from_checkpoint(path, model=CNN(1, 10))
|
| 17 |
+
return pl_net
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
def load_torch_net(path="../checkpoints/pytorch/version_0.pt"):
|
| 21 |
+
net = torch.load(path)
|
| 22 |
+
net.eval()
|
| 23 |
+
return net
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def get_sequence(model):
|
| 27 |
+
fig = make_subplots(rows=2, cols=5)
|
| 28 |
+
|
| 29 |
+
i, j = 0, np.random.randint(0, 30000)
|
| 30 |
+
|
| 31 |
+
while i < 10:
|
| 32 |
+
x, y = dataset[j]
|
| 33 |
+
y_pred = model(x.to("cuda")).detach().cpu()
|
| 34 |
+
p = torch.max(nn.functional.softmax(y_pred, dim=0))
|
| 35 |
+
y_pred = int(np.argmax(y_pred))
|
| 36 |
+
if y_pred == i and p > 0.95:
|
| 37 |
+
img = np.flip(np.array(x.reshape(28, 28)), 0)
|
| 38 |
+
fig.add_trace(px.imshow(img).data[0], row=int(i/5)+1, col=i%5+1)
|
| 39 |
+
i += 1
|
| 40 |
+
j += 1
|
| 41 |
+
return fig
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
if __name__ == "__main__":
|
| 45 |
+
mnist = load_mnist("../downloads/mnist/")
|
| 46 |
+
dataset, test_data = DatasetMNIST(*mnist["train"]), DatasetMNIST(*mnist["test"])
|
| 47 |
+
|
| 48 |
+
print("PyTorch Lightning Network")
|
| 49 |
+
get_sequence(load_pl_net().to("cuda")).write_image("images/pl_net.png")
|
| 50 |
+
print("Manual Network")
|
| 51 |
+
get_sequence(load_torch_net().to("cuda")).write_image("images/pytorch_net.png")
|