Update app.py
Browse files
app.py
CHANGED
|
@@ -1,15 +1,31 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
import re
|
| 3 |
from collections import Counter
|
|
|
|
| 4 |
|
| 5 |
def preprocess_text(text):
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
return text
|
| 11 |
|
| 12 |
def get_stats(vocab):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
pairs = Counter()
|
| 14 |
for word, freq in vocab.items():
|
| 15 |
symbols = word.split()
|
|
@@ -18,75 +34,80 @@ def get_stats(vocab):
|
|
| 18 |
return pairs
|
| 19 |
|
| 20 |
def merge_vocab(pair, v_in):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
v_out = {}
|
| 22 |
bigram = ' '.join(pair)
|
| 23 |
replacement = ''.join(pair)
|
| 24 |
for word in v_in:
|
| 25 |
-
|
| 26 |
-
w_out = re.sub(r'(?<!\S)' + re.escape(bigram) + r'(?!\S)', replacement, word)
|
| 27 |
v_out[w_out] = v_in[word]
|
| 28 |
return v_out
|
| 29 |
|
| 30 |
def apply_bpe(text, bpe_codes):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
word_list = text.split()
|
| 32 |
for pair, _ in bpe_codes:
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
vocab = Counter(preprocessed_text.split())
|
| 42 |
-
|
| 43 |
-
|
|
|
|
| 44 |
bpe_codes = []
|
| 45 |
-
while len(vocab) < target_vocab_size
|
| 46 |
pairs = get_stats(vocab)
|
| 47 |
if not pairs:
|
| 48 |
break
|
| 49 |
best = max(pairs, key=pairs.get)
|
| 50 |
vocab = merge_vocab(best, vocab)
|
| 51 |
bpe_codes.append((best, pairs[best]))
|
| 52 |
-
|
| 53 |
-
# Apply BPE to the original text
|
| 54 |
encoded_text = apply_bpe(preprocessed_text, bpe_codes)
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
compression_ratio,
|
| 71 |
-
criteria_met
|
| 72 |
-
)
|
| 73 |
-
|
| 74 |
-
# Define the Gradio interface
|
| 75 |
-
iface = gr.Interface(
|
| 76 |
-
fn=bpe_process,
|
| 77 |
-
inputs=[
|
| 78 |
-
gr.Textbox(label="Input Text", lines=5, placeholder="Enter text here..."),
|
| 79 |
-
gr.Slider(minimum=1000, maximum=10000, step=100, value=6000, label="Target Vocabulary Size")
|
| 80 |
-
],
|
| 81 |
-
outputs=[
|
| 82 |
-
gr.Textbox(label="Encoded Text"),
|
| 83 |
-
gr.Number(label="Vocabulary Size"),
|
| 84 |
-
gr.Number(label="Compression Ratio"),
|
| 85 |
-
gr.JSON(label="Criteria Met")
|
| 86 |
-
],
|
| 87 |
-
title="Byte Pair Encoding (BPE) for Hindi",
|
| 88 |
-
description="Encode Hindi text using Byte Pair Encoding. Set the target vocabulary size and see the encoded output along with vocabulary size and compression ratio."
|
| 89 |
-
)
|
| 90 |
-
|
| 91 |
-
# Launch the Gradio app
|
| 92 |
-
iface.launch(share=True)
|
|
|
|
|
|
|
| 1 |
import re
|
| 2 |
from collections import Counter
|
| 3 |
+
import gradio as gr
|
| 4 |
|
| 5 |
def preprocess_text(text):
|
| 6 |
+
"""Preprocesses Hindi text for BPE.
|
| 7 |
+
|
| 8 |
+
Args:
|
| 9 |
+
text (str): The Hindi text to preprocess.
|
| 10 |
+
|
| 11 |
+
Returns:
|
| 12 |
+
str: The preprocessed text.
|
| 13 |
+
"""
|
| 14 |
+
|
| 15 |
+
text = re.sub(r'[^\u0900-\u097F\s]', '', text) # Remove punctuation and special characters
|
| 16 |
+
text = ' '.join(text.split()) # Remove extra whitespace
|
| 17 |
return text
|
| 18 |
|
| 19 |
def get_stats(vocab):
|
| 20 |
+
"""Gets bigram statistics for BPE merging.
|
| 21 |
+
|
| 22 |
+
Args:
|
| 23 |
+
vocab (Counter): The vocabulary of word frequencies.
|
| 24 |
+
|
| 25 |
+
Returns:
|
| 26 |
+
Counter: A counter of bigram frequencies.
|
| 27 |
+
"""
|
| 28 |
+
|
| 29 |
pairs = Counter()
|
| 30 |
for word, freq in vocab.items():
|
| 31 |
symbols = word.split()
|
|
|
|
| 34 |
return pairs
|
| 35 |
|
| 36 |
def merge_vocab(pair, v_in):
|
| 37 |
+
"""Merges bigrams into single tokens in the vocabulary.
|
| 38 |
+
|
| 39 |
+
Args:
|
| 40 |
+
pair (tuple): The bigram to merge (word1, word2).
|
| 41 |
+
v_in (Counter): The input vocabulary.
|
| 42 |
+
|
| 43 |
+
Returns:
|
| 44 |
+
Counter: The updated vocabulary with the merged bigram.
|
| 45 |
+
"""
|
| 46 |
+
|
| 47 |
v_out = {}
|
| 48 |
bigram = ' '.join(pair)
|
| 49 |
replacement = ''.join(pair)
|
| 50 |
for word in v_in:
|
| 51 |
+
w_out = word.replace(bigram, replacement)
|
|
|
|
| 52 |
v_out[w_out] = v_in[word]
|
| 53 |
return v_out
|
| 54 |
|
| 55 |
def apply_bpe(text, bpe_codes):
|
| 56 |
+
"""Applies BPE to a preprocessed text.
|
| 57 |
+
|
| 58 |
+
Args:
|
| 59 |
+
text (str): The preprocessed text.
|
| 60 |
+
bpe_codes (list): A list of bigram pairs for merging.
|
| 61 |
+
|
| 62 |
+
Returns:
|
| 63 |
+
list: The encoded text as a list of tokens.
|
| 64 |
+
"""
|
| 65 |
+
|
| 66 |
word_list = text.split()
|
| 67 |
for pair, _ in bpe_codes:
|
| 68 |
+
if ' ' in pair:
|
| 69 |
+
p = re.compile(r'(?<!\S)' + re.escape(' '.join(pair)) + r'(?!\S)')
|
| 70 |
+
word_list = [p.sub(''.join(pair), word) for word in word_list]
|
| 71 |
+
return word_list
|
| 72 |
+
|
| 73 |
+
def bpe_process(text, target_vocab_size=6000):
|
| 74 |
+
"""Performs BPE on Hindi text.
|
| 75 |
+
|
| 76 |
+
Args:
|
| 77 |
+
text (str): The Hindi text to encode.
|
| 78 |
+
target_vocab_size (int, optional): The target vocabulary size. Defaults to 6000.
|
| 79 |
+
|
| 80 |
+
Returns:
|
| 81 |
+
tuple: A tuple containing the encoded text, vocabulary size, and compression ratio.
|
| 82 |
+
"""
|
| 83 |
+
|
| 84 |
+
preprocessed_text = preprocess_text(text)
|
| 85 |
vocab = Counter(preprocessed_text.split())
|
| 86 |
+
vocab.update(Counter([preprocessed_text[i:i+2] for i in range(len(preprocessed_text)-1)]))
|
| 87 |
+
vocab.update(Counter([preprocessed_text[i:i+3] for i in range(len(preprocessed_text)-2)]))
|
| 88 |
+
|
| 89 |
bpe_codes = []
|
| 90 |
+
while len(vocab) < target_vocab_size:
|
| 91 |
pairs = get_stats(vocab)
|
| 92 |
if not pairs:
|
| 93 |
break
|
| 94 |
best = max(pairs, key=pairs.get)
|
| 95 |
vocab = merge_vocab(best, vocab)
|
| 96 |
bpe_codes.append((best, pairs[best]))
|
| 97 |
+
|
|
|
|
| 98 |
encoded_text = apply_bpe(preprocessed_text, bpe_codes)
|
| 99 |
+
original_size = len(preprocessed_text)
|
| 100 |
+
compressed_size = len(encoded_text)
|
| 101 |
+
compression_ratio = original_size / compressed_size
|
| 102 |
+
|
| 103 |
+
return encoded_text, len(vocab), compression_ratio
|
| 104 |
+
|
| 105 |
+
def gradio_demo():
|
| 106 |
+
"""Creates a Gradio app for BPE in Hindi."""
|
| 107 |
+
|
| 108 |
+
iface = gr.Interface(
|
| 109 |
+
fn=bpe_process,
|
| 110 |
+
inputs="textbox",
|
| 111 |
+
outputs=["text", "label", "label"],
|
| 112 |
+
title="Hindi Byte Pair Encoding (BPE)",
|
| 113 |
+
description="Enter Hindi text and see
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|