Spaces:
Sleeping
Sleeping
| import torch | |
| import torch.nn as nn | |
| from torch.nn import functional as F | |
| import tiktoken | |
| import gradio as gr | |
| # Define the model architecture | |
| class GPTConfig: | |
| def __init__(self): | |
| self.block_size = 1024 | |
| self.vocab_size = 50304 | |
| self.n_layer = 12 | |
| self.n_head = 12 | |
| self.n_embd = 768 | |
| class CausalSelfAttention(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| assert config.n_embd % config.n_head == 0 | |
| self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd) | |
| self.c_proj = nn.Linear(config.n_embd, config.n_embd) | |
| self.n_head = config.n_head | |
| self.n_embd = config.n_embd | |
| self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)).view(1, 1, config.block_size, config.block_size)) | |
| def forward(self, x): | |
| B, T, C = x.size() | |
| q, k, v = self.c_attn(x).split(self.n_embd, dim=2) | |
| k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) | |
| q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) | |
| v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) | |
| y = F.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=0.0, is_causal=True) | |
| y = y.transpose(1, 2).contiguous().view(B, T, C) | |
| return self.c_proj(y) | |
| class MLP(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd) | |
| self.gelu = nn.GELU() | |
| self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd) | |
| def forward(self, x): | |
| return self.c_proj(self.gelu(self.c_fc(x))) | |
| class Block(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.ln_1 = nn.LayerNorm(config.n_embd) | |
| self.attn = CausalSelfAttention(config) | |
| self.ln_2 = nn.LayerNorm(config.n_embd) | |
| self.mlp = MLP(config) | |
| def forward(self, x): | |
| x = x + self.attn(self.ln_1(x)) | |
| x = x + self.mlp(self.ln_2(x)) | |
| return x | |
| class GPT(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.config = config | |
| self.transformer = nn.ModuleDict(dict( | |
| wte = nn.Embedding(config.vocab_size, config.n_embd), | |
| wpe = nn.Embedding(config.block_size, config.n_embd), | |
| h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]), | |
| ln_f = nn.LayerNorm(config.n_embd), | |
| )) | |
| self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) | |
| self.transformer.wte.weight = self.lm_head.weight | |
| self.apply(self._init_weights) | |
| def _init_weights(self, module): | |
| if isinstance(module, nn.Linear): | |
| torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) | |
| if module.bias is not None: | |
| torch.nn.init.zeros_(module.bias) | |
| elif isinstance(module, nn.Embedding): | |
| torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) | |
| def forward(self, idx, targets=None): | |
| device = idx.device | |
| b, t = idx.size() | |
| assert t <= self.config.block_size, f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}" | |
| pos = torch.arange(0, t, dtype=torch.long, device=device).unsqueeze(0) | |
| tok_emb = self.transformer.wte(idx) | |
| pos_emb = self.transformer.wpe(pos) | |
| x = tok_emb + pos_emb | |
| for block in self.transformer.h: | |
| x = block(x) | |
| x = self.transformer.ln_f(x) | |
| logits = self.lm_head(x) | |
| loss = None | |
| if targets is not None: | |
| loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1) | |
| return logits, loss | |
| # Load the model | |
| def load_model(model_path): | |
| config = GPTConfig() | |
| model = GPT(config) | |
| checkpoint = torch.load(model_path, map_location=torch.device('cpu')) | |
| print("Checkpoint keys:", checkpoint.keys()) # Debug print | |
| if 'model_state_dict' in checkpoint: | |
| model.load_state_dict(checkpoint['model_state_dict']) | |
| else: | |
| model.load_state_dict(checkpoint) | |
| model.eval() | |
| return model | |
| # Load the model | |
| model = load_model('gpt_5000.pt') # Replace with the actual path to your .pt file | |
| enc = tiktoken.get_encoding('gpt2') | |
| # Improved text generation function | |
| def generate_text(prompt, max_length=100, temperature=0.7, top_k=50): | |
| input_ids = torch.tensor(enc.encode(prompt)).unsqueeze(0) | |
| generated = [] | |
| with torch.no_grad(): | |
| for _ in range(max_length): | |
| outputs, _ = model(input_ids) | |
| next_token_logits = outputs[:, -1, :] | |
| # Apply temperature | |
| next_token_logits = next_token_logits / temperature | |
| # Apply top-k filtering | |
| top_k_logits, top_k_indices = torch.topk(next_token_logits, top_k, dim=-1) | |
| next_token_probs = F.softmax(top_k_logits, dim=-1) | |
| # Sample from the filtered distribution | |
| next_token_index = torch.multinomial(next_token_probs, num_samples=1) | |
| next_token = top_k_indices.gather(-1, next_token_index) | |
| input_ids = torch.cat([input_ids, next_token], dim=-1) | |
| generated.append(next_token.item()) | |
| # Stop if we generate a newline, but only after generating at least 20 tokens | |
| if next_token.item() == enc.encode('\n')[0] and len(generated) > 20: | |
| break | |
| generated_text = enc.decode(generated) | |
| return prompt + generated_text | |
| # Gradio interface | |
| def gradio_generate(prompt, max_length, temperature, top_k): | |
| return generate_text(prompt, max_length, temperature, top_k) | |
| iface = gr.Interface( | |
| fn=gradio_generate, | |
| inputs=[ | |
| gr.Textbox(label="Prompt", placeholder="Enter your prompt here..."), | |
| gr.Slider(minimum=20, maximum=500, value=100, step=1, label="Max Length"), | |
| gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature"), | |
| gr.Slider(minimum=1, maximum=100, value=50, step=1, label="Top-k") | |
| ], | |
| outputs=gr.Textbox(label="Generated Text"), | |
| title="GPT Text Generator", | |
| description="Enter a prompt and adjust parameters to generate text using a fine-tuned GPT model." | |
| ) | |
| # Launch the app | |
| iface.launch() |