Spaces:
Starting
Starting
| import torch | |
| import torch.nn as nn | |
| from torch.nn import functional as F | |
| import tiktoken | |
| import gradio as gr | |
| try: | |
| import spaces | |
| use_spaces_gpu = True | |
| except ImportError: | |
| use_spaces_gpu = False | |
| def dummy_gpu_decorator(func): | |
| return func | |
| spaces = type('', (), {'GPU': dummy_gpu_decorator})() | |
| # Define the GPTConfig class | |
| class GPTConfig: | |
| def __init__(self): | |
| self.block_size = 1024 | |
| self.vocab_size = 50304 | |
| self.n_layer = 12 | |
| self.n_head = 12 | |
| self.n_embd = 768 | |
| # Define other necessary classes | |
| class CausalSelfAttention(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| assert config.n_embd % config.n_head == 0 | |
| self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd) | |
| self.c_proj = nn.Linear(config.n_embd, config.n_embd) | |
| self.n_head = config.n_head | |
| self.n_embd = config.n_embd | |
| self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)).view(1, 1, config.block_size, config.block_size)) | |
| def forward(self, x): | |
| B, T, C = x.size() | |
| q, k, v = self.c_attn(x).split(self.n_embd, dim=2) | |
| k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) | |
| q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) | |
| v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) | |
| y = F.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=0.0, is_causal=True) | |
| y = y.transpose(1, 2).contiguous().view(B, T, C) | |
| return self.c_proj(y) | |
| class MLP(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd) | |
| self.gelu = nn.GELU() | |
| self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd) | |
| def forward(self, x): | |
| return self.c_proj(self.gelu(self.c_fc(x))) | |
| class Block(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.ln_1 = nn.LayerNorm(config.n_embd) | |
| self.attn = CausalSelfAttention(config) | |
| self.ln_2 = nn.LayerNorm(config.n_embd) | |
| self.mlp = MLP(config) | |
| def forward(self, x): | |
| x = x + self.attn(self.ln_1(x)) | |
| x = x + self.mlp(self.ln_2(x)) | |
| return x | |
| class GPT(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.config = config | |
| self.transformer = nn.ModuleDict(dict( | |
| wte = nn.Embedding(config.vocab_size, config.n_embd), | |
| wpe = nn.Embedding(config.block_size, config.n_embd), | |
| h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]), | |
| ln_f = nn.LayerNorm(config.n_embd), | |
| )) | |
| self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) | |
| self.transformer.wte.weight = self.lm_head.weight | |
| self.apply(self._init_weights) | |
| def _init_weights(self, module): | |
| if isinstance(module, nn.Linear): | |
| torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) | |
| if module.bias is not None: | |
| torch.nn.init.zeros_(module.bias) | |
| elif isinstance(module, nn.Embedding): | |
| torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) | |
| def forward(self, idx, targets=None): | |
| device = idx.device | |
| b, t = idx.size() | |
| assert t <= self.config.block_size, f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}" | |
| pos = torch.arange(0, t, dtype=torch.long, device=device).unsqueeze(0) | |
| tok_emb = self.transformer.wte(idx) | |
| pos_emb = self.transformer.wpe(pos) | |
| x = tok_emb + pos_emb | |
| for block in self.transformer.h: | |
| x = block(x) | |
| x = self.transformer.ln_f(x) | |
| logits = self.lm_head(x) | |
| loss = None | |
| if targets is not None: | |
| loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1) | |
| return logits, loss | |
| # Update the load_model function | |
| def load_model(model_path): | |
| config = GPTConfig() | |
| model = GPT(config) | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| checkpoint = torch.load(model_path, map_location=device) | |
| if 'model_state_dict' in checkpoint: | |
| model.load_state_dict(checkpoint['model_state_dict']) | |
| else: | |
| model.load_state_dict(checkpoint) | |
| model.eval() | |
| model.to(device) | |
| return model | |
| enc = tiktoken.get_encoding('gpt2') | |
| # Update the generate_text function | |
| def generate_text(prompt, max_length=432, temperature=0.8, top_k=40): | |
| model = load_model('gpt_model.pth') | |
| device = next(model.parameters()).device | |
| input_ids = torch.tensor(enc.encode(prompt)).unsqueeze(0).to(device) | |
| generated = [] | |
| with torch.no_grad(): | |
| for _ in range(max_length): | |
| outputs, _ = model(input_ids) | |
| next_token_logits = outputs[:, -1, :] | |
| next_token_logits = next_token_logits / temperature | |
| top_k_logits, top_k_indices = torch.topk(next_token_logits, top_k, dim=-1) | |
| next_token_probs = F.softmax(top_k_logits, dim=-1) | |
| next_token_index = torch.multinomial(next_token_probs, num_samples=1) | |
| next_token = top_k_indices.gather(-1, next_token_index) | |
| input_ids = torch.cat([input_ids, next_token], dim=-1) | |
| generated.append(next_token.item()) | |
| if next_token.item() == enc.encode('\n')[0] and len(generated) > 100: | |
| break | |
| return enc.decode(generated) | |
| # Add the gradio_generate function | |
| def gradio_generate(prompt, max_length, temperature, top_k): | |
| return generate_text(prompt, max_length, temperature, top_k) | |
| # # Your existing imports and model code here... | |
| css = """ | |
| <style> | |
| body { | |
| background-color: #0f1624; | |
| color: #e0e0e0; | |
| font-family: 'Courier New', monospace; | |
| background-image: | |
| radial-gradient(white, rgba(255,255,255,.2) 2px, transparent 40px), | |
| radial-gradient(white, rgba(255,255,255,.15) 1px, transparent 30px), | |
| radial-gradient(white, rgba(255,255,255,.1) 2px, transparent 40px), | |
| radial-gradient(rgba(255,255,255,.4), rgba(255,255,255,.1) 2px, transparent 30px); | |
| background-size: 550px 550px, 350px 350px, 250px 250px, 150px 150px; | |
| background-position: 0 0, 40px 60px, 130px 270px, 70px 100px; | |
| animation: backgroundScroll 60s linear infinite; | |
| } | |
| @keyframes backgroundScroll { | |
| 0% { background-position: 0 0, 40px 60px, 130px 270px, 70px 100px; } | |
| 100% { background-position: 550px 550px, 590px 610px, 680px 820px, 620px 650px; } | |
| } | |
| .container { max-width: 800px; margin: 0 auto; padding: 20px; } | |
| .header { | |
| text-align: center; | |
| margin-bottom: 30px; | |
| font-family: 'Copperplate', fantasy; | |
| color: #ffd700; | |
| text-shadow: 0 0 10px #ffd700, 0 0 20px #ffd700, 0 0 30px #ffd700; | |
| } | |
| .chat-box { | |
| background-color: rgba(42, 42, 42, 0.7); | |
| border-radius: 15px; | |
| padding: 20px; | |
| margin-bottom: 20px; | |
| box-shadow: 0 0 20px rgba(255, 215, 0, 0.3); | |
| } | |
| .user-input { | |
| background-color: rgba(58, 58, 58, 0.8); | |
| border: 2px solid #ffd700; | |
| color: #ffffff; | |
| padding: 10px; | |
| border-radius: 5px; | |
| width: 100%; | |
| transition: all 0.3s ease; | |
| } | |
| .user-input:focus { | |
| box-shadow: 0 0 15px #ffd700; | |
| } | |
| .generate-btn { | |
| background-color: #ffd700; | |
| color: #0f1624; | |
| border: none; | |
| padding: 10px 20px; | |
| border-radius: 5px; | |
| cursor: pointer; | |
| font-weight: bold; | |
| transition: all 0.3s ease; | |
| } | |
| .generate-btn:hover { | |
| background-color: #ffec8b; | |
| transform: scale(1.05); | |
| } | |
| .output-box { | |
| background-color: rgba(42, 42, 42, 0.7); | |
| border-radius: 15px; | |
| padding: 20px; | |
| margin-top: 20px; | |
| min-height: 100px; | |
| border: 1px solid #ffd700; | |
| white-space: pre-wrap; | |
| font-family: 'Georgia', serif; | |
| line-height: 1.6; | |
| box-shadow: inset 0 0 10px rgba(255, 215, 0, 0.3); | |
| } | |
| .gr-slider { | |
| --slider-color: #ffd700; | |
| } | |
| .gr-box { | |
| border-color: #ffd700; | |
| background-color: rgba(42, 42, 42, 0.7); | |
| } | |
| </style> | |
| """ | |
| with gr.Blocks(css=css) as demo: | |
| gr.HTML("<div class='header'><h1>🌟 Enchanted Tales Generator 🌟</h1></div>") | |
| with gr.Row(): | |
| with gr.Column(scale=3): | |
| prompt = gr.Textbox( | |
| placeholder="Begin your magical journey here (e.g., 'In a realm beyond the mists of time...')", | |
| label="Story Incantation", | |
| elem_classes="user-input" | |
| ) | |
| with gr.Column(scale=1): | |
| generate_btn = gr.Button("Weave the Tale", elem_classes="generate-btn") | |
| with gr.Row(): | |
| max_length = gr.Slider(minimum=50, maximum=500, value=432, step=1, label="Scroll Length") | |
| temperature = gr.Slider(minimum=0.1, maximum=1.0, value=0.8, step=0.1, label="Magical Intensity") | |
| top_k = gr.Slider(minimum=1, maximum=100, value=40, step=1, label="Arcane Diversity") | |
| output = gr.Markdown(elem_classes="output-box") | |
| generate_btn.click( | |
| gradio_generate, | |
| inputs=[prompt, max_length, temperature, top_k], | |
| outputs=output | |
| ) | |
| gr.HTML(""" | |
| <div style="text-align: center; margin-top: 20px; font-style: italic; color: #ffd700;"> | |
| "In the realm of imagination, every word is a spell, every sentence a charm." | |
| </div> | |
| """) | |
| if __name__ == "__main__": | |
| demo.launch() |