Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import torch | |
| from transformers import AutoProcessor, AutoModel | |
| from PIL import Image, ImageDraw, ImageFont | |
| import numpy as np | |
| import random | |
| import os | |
| import wget | |
| import traceback | |
| # --- Configuration & Model Loading --- | |
| # Device Selection with fallback | |
| DEVICE = "cuda" if torch.cuda.is_available() else "cpu" # Simplified check | |
| print(f"Using device: {DEVICE}") | |
| # --- CLIP Setup --- | |
| CLIP_MODEL_ID = "openai/clip-vit-base-patch32" | |
| clip_processor = None | |
| clip_model = None | |
| def load_clip_model(): | |
| global clip_processor, clip_model | |
| if clip_processor is None: | |
| try: | |
| print(f"Loading CLIP processor: {CLIP_MODEL_ID}...") | |
| clip_processor = AutoProcessor.from_pretrained(CLIP_MODEL_ID) | |
| print("CLIP processor loaded.") | |
| except Exception as e: | |
| print(f"Error loading CLIP processor: {e}") | |
| traceback.print_exc() # Print traceback | |
| return False | |
| if clip_model is None: | |
| try: | |
| print(f"Loading CLIP model: {CLIP_MODEL_ID}...") | |
| clip_model = AutoModel.from_pretrained(CLIP_MODEL_ID).to(DEVICE) | |
| print(f"CLIP model loaded to {DEVICE}.") | |
| except Exception as e: | |
| print(f"Error loading CLIP model: {e}") | |
| traceback.print_exc() # Print traceback | |
| return False | |
| return True | |
| # --- FastSAM Setup --- | |
| FASTSAM_CHECKPOINT = "FastSAM-s.pt" | |
| FASTSAM_CHECKPOINT_URL = f"https://huggingface.co/CASIA-IVA-Lab/FastSAM-s/resolve/main/{FASTSAM_CHECKPOINT}" | |
| fastsam_model = None | |
| fastsam_lib_imported = False | |
| FastSAM = None # Define placeholders | |
| FastSAMPrompt = None # Define placeholders | |
| def check_and_import_fastsam(): | |
| global fastsam_lib_imported, FastSAM, FastSAMPrompt # Make sure globals are modified | |
| if not fastsam_lib_imported: | |
| try: | |
| from fastsam import FastSAM as FastSAM_lib, FastSAMPrompt as FastSAMPrompt_lib # Use temp names | |
| FastSAM = FastSAM_lib # Assign to global | |
| FastSAMPrompt = FastSAMPrompt_lib # Assign to global | |
| fastsam_lib_imported = True | |
| print("fastsam library imported successfully.") | |
| except ImportError as e: | |
| print(f"Error: 'fastsam' library not found. Please install it: pip install git+https://github.com/CASIA-IVA-Lab/FastSAM.git") | |
| print(f"ImportError: {e}") | |
| fastsam_lib_imported = False | |
| except Exception as e: | |
| print(f"Unexpected error during fastsam import: {e}") | |
| traceback.print_exc() | |
| fastsam_lib_imported = False | |
| return fastsam_lib_imported | |
| def download_fastsam_weights(retries=3): | |
| if not os.path.exists(FASTSAM_CHECKPOINT): | |
| print(f"Downloading FastSAM weights: {FASTSAM_CHECKPOINT} from {FASTSAM_CHECKPOINT_URL}...") | |
| for attempt in range(retries): | |
| try: | |
| # Ensure the directory exists if FASTSAM_CHECKPOINT includes a path | |
| os.makedirs(os.path.dirname(FASTSAM_CHECKPOINT) or '.', exist_ok=True) | |
| wget.download(FASTSAM_CHECKPOINT_URL, FASTSAM_CHECKPOINT) | |
| print("FastSAM weights downloaded.") | |
| return True # Return True on successful download | |
| except Exception as e: | |
| print(f"Attempt {attempt + 1}/{retries} failed to download FastSAM weights: {e}") | |
| if os.path.exists(FASTSAM_CHECKPOINT): # Cleanup partial download | |
| try: | |
| os.remove(FASTSAM_CHECKPOINT) | |
| except OSError: | |
| pass | |
| if attempt + 1 == retries: | |
| print("Failed to download weights after all attempts.") | |
| return False | |
| return False # Should not be reached if loop completes, but added for clarity | |
| else: | |
| print("FastSAM weights already exist.") | |
| return True # Weights exist | |
| def load_fastsam_model(): | |
| global fastsam_model | |
| if fastsam_model is None: | |
| if not check_and_import_fastsam(): | |
| print("Cannot load FastSAM model due to library import failure.") | |
| return False | |
| if download_fastsam_weights(): | |
| # Ensure FastSAM class is available (might fail if import failed earlier but file exists) | |
| if FastSAM is None: | |
| print("FastSAM class not available, check import status.") | |
| return False | |
| try: | |
| print(f"Loading FastSAM model: {FASTSAM_CHECKPOINT}...") | |
| # Instantiate the imported class | |
| fastsam_model = FastSAM(FASTSAM_CHECKPOINT) | |
| # Move model to device *after* initialization (common practice) | |
| # Note: Check FastSAM docs if it needs explicit .to(DEVICE) or handles it internally | |
| # fastsam_model.model.to(DEVICE) # Example if needed, adjust based on FastSAM structure | |
| print("FastSAM model loaded.") | |
| return True | |
| except Exception as e: | |
| print(f"Error loading FastSAM model weights or initializing: {e}") | |
| traceback.print_exc() | |
| return False | |
| else: | |
| print("FastSAM weights not found or download failed.") | |
| return False | |
| # Model already loaded | |
| return True | |
| # --- Processing Functions --- | |
| def run_clip_zero_shot(image: Image.Image, text_labels: str): | |
| # Keep CLIP as is, seems less likely to be the primary issue | |
| if not isinstance(image, Image.Image): | |
| print(f"CLIP input is not a PIL Image, type: {type(image)}") | |
| # Try to convert if it's a numpy array (common from Gradio) | |
| if isinstance(image, np.ndarray): | |
| try: | |
| image = Image.fromarray(image) | |
| print("Converted numpy input to PIL Image for CLIP.") | |
| except Exception as e: | |
| print(f"Failed to convert numpy array to PIL Image: {e}") | |
| return "Error: Invalid image input format.", None | |
| else: | |
| return "Error: Please provide a valid image.", None | |
| if clip_model is None or clip_processor is None: | |
| if not load_clip_model(): | |
| # Return None for the image part on critical error | |
| return "Error: CLIP Model could not be loaded.", None | |
| if not text_labels: | |
| # Return empty dict and original image if no labels | |
| return {}, image | |
| labels = [label.strip() for label in text_labels.split(',') if label.strip()] | |
| if not labels: | |
| # Return empty dict and original image if no valid labels | |
| return {}, image | |
| print(f"Running CLIP zero-shot classification with labels: {labels}") | |
| try: | |
| # Ensure image is RGB | |
| if image.mode != "RGB": | |
| print(f"Converting image from {image.mode} to RGB for CLIP.") | |
| image = image.convert("RGB") | |
| inputs = clip_processor(text=labels, images=image, return_tensors="pt", padding=True).to(DEVICE) | |
| with torch.no_grad(): | |
| outputs = clip_model(**inputs) | |
| # Calculate probabilities | |
| logits_per_image = outputs.logits_per_image # B x N_labels | |
| probs = logits_per_image.softmax(dim=1) # Softmax over labels | |
| # Create confidences dictionary | |
| confidences = {labels[i]: float(probs[0, i].item()) for i in range(len(labels))} | |
| print(f"CLIP Confidences: {confidences}") | |
| # Return confidences and the original (potentially converted) image | |
| return confidences, image | |
| except Exception as e: | |
| print(f"Error during CLIP processing: {e}") | |
| traceback.print_exc() | |
| # Return error message and None for image | |
| return f"Error during CLIP processing: {e}", None | |
| def run_fastsam_segmentation(image_pil: Image.Image, conf_threshold: float = 0.4, iou_threshold: float = 0.9): | |
| # Add input type check | |
| if not isinstance(image_pil, Image.Image): | |
| print(f"FastSAM input is not a PIL Image, type: {type(image_pil)}") | |
| if isinstance(image_pil, np.ndarray): | |
| try: | |
| image_pil = Image.fromarray(image_pil) | |
| print("Converted numpy input to PIL Image for FastSAM.") | |
| except Exception as e: | |
| print(f"Failed to convert numpy array to PIL Image: {e}") | |
| # Return None for image on error | |
| return None, "Error: Invalid image input format." # Return tuple for consistency | |
| else: | |
| # Return None for image on error | |
| return None, "Error: Please provide a valid image." # Return tuple | |
| # Ensure model is loaded | |
| if not load_fastsam_model() or not fastsam_lib_imported or FastSAMPrompt is None: | |
| # Return None for image on critical error | |
| return None, "Error: FastSAM not loaded or library unavailable." | |
| print(f"Running FastSAM 'segment everything' with conf={conf_threshold}, iou={iou_threshold}...") | |
| output_image = None # Initialize output image | |
| status_message = "Processing..." # Initial status | |
| try: | |
| # Ensure image is RGB | |
| if image_pil.mode != "RGB": | |
| print(f"Converting image from {image_pil.mode} to RGB for FastSAM.") | |
| image_pil_rgb = image_pil.convert("RGB") | |
| else: | |
| image_pil_rgb = image_pil | |
| # Convert PIL Image to NumPy array (RGB) | |
| image_np_rgb = np.array(image_pil_rgb) | |
| print(f"Input image shape for FastSAM: {image_np_rgb.shape}") | |
| # Run FastSAM model | |
| # Make sure the arguments match what FastSAM expects | |
| everything_results = fastsam_model( | |
| image_np_rgb, | |
| device=DEVICE, | |
| retina_masks=True, | |
| imgsz=640, # Or another size FastSAM supports | |
| conf=conf_threshold, | |
| iou=iou_threshold, | |
| verbose=True # Keep verbose for debugging | |
| ) | |
| # Check if results are valid before creating prompt | |
| if everything_results is None or not isinstance(everything_results, list) or len(everything_results) == 0: | |
| print("FastSAM model returned None or empty results.") | |
| # Return original image and status | |
| return image_pil, "FastSAM did not return valid results." | |
| # Results might be in a different format, inspect 'everything_results' | |
| print(f"Type of everything_results: {type(everything_results)}") | |
| print(f"Length of everything_results: {len(everything_results)}") | |
| if len(everything_results) > 0: | |
| print(f"Type of first element: {type(everything_results[0])}") | |
| # Try to access potential attributes like 'masks' if it's an object | |
| if hasattr(everything_results[0], 'masks') and everything_results[0].masks is not None: | |
| print(f"Masks found in results object, shape: {everything_results[0].masks.data.shape}") | |
| else: | |
| print("First result element does not have 'masks' attribute or it's None.") | |
| # Process results with FastSAMPrompt | |
| # Ensure FastSAMPrompt class is available | |
| if FastSAMPrompt is None: | |
| print("FastSAMPrompt class is not available.") | |
| return image_pil, "Error: FastSAMPrompt class not loaded." | |
| prompt_process = FastSAMPrompt(image_np_rgb, everything_results, device=DEVICE) | |
| ann = prompt_process.everything_prompt() # Get all annotations | |
| # Check annotation format - Adjust based on actual FastSAM output structure | |
| # Assuming 'ann' is a list and the first element is a dictionary containing masks | |
| masks = None | |
| if isinstance(ann, list) and len(ann) > 0 and isinstance(ann[0], dict) and 'masks' in ann[0]: | |
| mask_tensor = ann[0]['masks'] | |
| if mask_tensor is not None and mask_tensor.numel() > 0: # Check if tensor is not None and not empty | |
| masks = mask_tensor.cpu().numpy() | |
| print(f"Found {len(masks)} masks with shape: {masks.shape}") | |
| else: | |
| print("Annotation 'masks' tensor is None or empty.") | |
| else: | |
| print(f"No masks found or annotation format unexpected. ann type: {type(ann)}") | |
| if isinstance(ann, list) and len(ann) > 0: | |
| print(f"First element of ann: {ann[0]}") | |
| # Prepare output image (start with original) | |
| output_image = image_pil.copy() | |
| # Draw masks if found | |
| if masks is not None and len(masks) > 0: | |
| # Ensure output_image is RGBA for compositing | |
| overlay = Image.new('RGBA', output_image.size, (0, 0, 0, 0)) | |
| draw = ImageDraw.Draw(overlay) | |
| for i, mask in enumerate(masks): | |
| # Ensure mask is boolean/binary before converting | |
| binary_mask = (mask > 0) # Use threshold 0 for binary mask from FastSAM output | |
| mask_uint8 = binary_mask.astype(np.uint8) * 255 | |
| if mask_uint8.max() == 0: # Skip empty masks | |
| # print(f"Skipping empty mask {i}") | |
| continue | |
| color = (random.randint(50, 255), random.randint(50, 255), random.randint(50, 255), 180) # RGBA color | |
| try: | |
| mask_image = Image.fromarray(mask_uint8, mode='L') # Grayscale mask | |
| # Draw the mask onto the overlay | |
| draw.bitmap((0, 0), mask_image, fill=color) | |
| except Exception as draw_err: | |
| print(f"Error drawing mask {i}: {draw_err}") | |
| traceback.print_exc() | |
| continue # Skip this mask | |
| # Composite the overlay onto the image | |
| try: | |
| output_image_rgba = output_image.convert('RGBA') | |
| output_image_composited = Image.alpha_composite(output_image_rgba, overlay) | |
| output_image = output_image_composited.convert('RGB') # Convert back to RGB for Gradio | |
| status_message = f"Segmentation complete. Found {len(masks)} masks." | |
| print("Mask drawing and compositing finished.") | |
| except Exception as comp_err: | |
| print(f"Error during alpha compositing: {comp_err}") | |
| traceback.print_exc() | |
| output_image = image_pil # Fallback to original image | |
| status_message = "Error during mask visualization." | |
| else: | |
| print("No masks detected or processed for 'segment everything' mode.") | |
| status_message = "No segments found or processed." | |
| output_image = image_pil # Return original image if no masks | |
| # Save for debugging before returning | |
| if output_image: | |
| try: | |
| debug_path = "debug_fastsam_everything_output.png" | |
| output_image.save(debug_path) | |
| print(f"Saved debug output to {debug_path}") | |
| except Exception as save_err: | |
| print(f"Failed to save debug image: {save_err}") | |
| return output_image, status_message # Return image and status message | |
| except Exception as e: | |
| print(f"Error during FastSAM 'everything' processing: {e}") | |
| traceback.print_exc() | |
| # Return original image and error message in case of failure | |
| return image_pil, f"Error during processing: {e}" | |
| def run_text_prompted_segmentation(image_pil: Image.Image, text_prompts: str, conf_threshold: float = 0.4, iou_threshold: float = 0.9): | |
| # Add input type check | |
| if not isinstance(image_pil, Image.Image): | |
| print(f"FastSAM Text input is not a PIL Image, type: {type(image_pil)}") | |
| if isinstance(image_pil, np.ndarray): | |
| try: | |
| image_pil = Image.fromarray(image_pil) | |
| print("Converted numpy input to PIL Image for FastSAM Text.") | |
| except Exception as e: | |
| print(f"Failed to convert numpy array to PIL Image: {e}") | |
| return None, "Error: Invalid image input format." | |
| else: | |
| return None, "Error: Please provide a valid image." | |
| # Ensure model is loaded | |
| if not load_fastsam_model() or not fastsam_lib_imported or FastSAMPrompt is None: | |
| return image_pil, "Error: FastSAM Model not loaded or library unavailable." # Return original image on load fail | |
| if not text_prompts: | |
| return image_pil, "Please enter text prompts (e.g., 'person, dog')." | |
| prompts = [p.strip() for p in text_prompts.split(',') if p.strip()] | |
| if not prompts: | |
| return image_pil, "No valid text prompts entered." | |
| print(f"Running FastSAM text-prompted segmentation for: {prompts} with conf={conf_threshold}, iou={iou_threshold}") | |
| output_image = None | |
| status_message = "Processing..." | |
| try: | |
| # Ensure image is RGB | |
| if image_pil.mode != "RGB": | |
| print(f"Converting image from {image_pil.mode} to RGB for FastSAM.") | |
| image_pil_rgb = image_pil.convert("RGB") | |
| else: | |
| image_pil_rgb = image_pil | |
| image_np_rgb = np.array(image_pil_rgb) | |
| print(f"Input image shape for FastSAM Text: {image_np_rgb.shape}") | |
| # Run FastSAM once to get all potential segments | |
| everything_results = fastsam_model( | |
| image_np_rgb, device=DEVICE, retina_masks=True, imgsz=640, # Use consistent args | |
| conf=conf_threshold, iou=iou_threshold, verbose=True | |
| ) | |
| # Check results | |
| if everything_results is None or not isinstance(everything_results, list) or len(everything_results) == 0: | |
| print("FastSAM model returned None or empty results for text prompt base.") | |
| return image_pil, "FastSAM did not return base results." | |
| # Initialize FastSAMPrompt | |
| if FastSAMPrompt is None: | |
| print("FastSAMPrompt class is not available.") | |
| return image_pil, "Error: FastSAMPrompt class not loaded." | |
| prompt_process = FastSAMPrompt(image_np_rgb, everything_results, device=DEVICE) | |
| all_matching_masks = [] | |
| found_prompts_details = [] # Store details like 'prompt (count)' | |
| # Process each text prompt | |
| for text in prompts: | |
| print(f" Processing prompt: '{text}'") | |
| # Get annotation for the specific text prompt | |
| ann = prompt_process.text_prompt(text=text) | |
| # Check annotation format and extract masks | |
| current_masks = None | |
| num_found = 0 | |
| # Adjust check based on actual structure of 'ann' for text_prompt | |
| if isinstance(ann, list) and len(ann) > 0 and isinstance(ann[0], dict) and 'masks' in ann[0]: | |
| mask_tensor = ann[0]['masks'] | |
| if mask_tensor is not None and mask_tensor.numel() > 0: | |
| current_masks = mask_tensor.cpu().numpy() | |
| num_found = len(current_masks) | |
| print(f" Found {num_found} mask(s) for '{text}'. Shape: {current_masks.shape}") | |
| all_matching_masks.extend(current_masks) # Add found masks to the list | |
| else: | |
| print(f" Annotation 'masks' tensor is None or empty for '{text}'.") | |
| else: | |
| print(f" No masks found or annotation format unexpected for '{text}'. ann type: {type(ann)}") | |
| if isinstance(ann, list) and len(ann) > 0: | |
| print(f" First element of ann for '{text}': {ann[0]}") | |
| found_prompts_details.append(f"{text} ({num_found})") # Record count for status | |
| # Prepare output image | |
| output_image = image_pil.copy() | |
| status_message = f"Results: {', '.join(found_prompts_details)}" if found_prompts_details else "No matches found for any prompt." | |
| # Draw all collected masks if any were found | |
| if all_matching_masks: | |
| print(f"Total masks collected across all prompts: {len(all_matching_masks)}") | |
| # Stack masks if needed (optional, can draw one by one) | |
| # masks_np = np.stack(all_matching_masks, axis=0) | |
| # print(f"Total masks stacked shape: {masks_np.shape}") | |
| overlay = Image.new('RGBA', output_image.size, (0, 0, 0, 0)) | |
| draw = ImageDraw.Draw(overlay) | |
| for i, mask in enumerate(all_matching_masks): # Iterate through collected masks | |
| binary_mask = (mask > 0) | |
| mask_uint8 = binary_mask.astype(np.uint8) * 255 | |
| if mask_uint8.max() == 0: | |
| continue # Skip empty masks | |
| # Assign a unique color per mask or per prompt (using random here) | |
| color = (random.randint(50, 255), random.randint(50, 255), random.randint(50, 255), 180) | |
| try: | |
| mask_image = Image.fromarray(mask_uint8, mode='L') | |
| draw.bitmap((0, 0), mask_image, fill=color) | |
| except Exception as draw_err: | |
| print(f"Error drawing collected mask {i}: {draw_err}") | |
| traceback.print_exc() | |
| continue | |
| # Composite the overlay | |
| try: | |
| output_image_rgba = output_image.convert('RGBA') | |
| output_image_composited = Image.alpha_composite(output_image_rgba, overlay) | |
| output_image = output_image_composited.convert('RGB') | |
| print("Text prompt mask drawing and compositing finished.") | |
| except Exception as comp_err: | |
| print(f"Error during alpha compositing for text prompts: {comp_err}") | |
| traceback.print_exc() | |
| output_image = image_pil # Fallback | |
| status_message += " (Error during visualization)" | |
| else: | |
| print("No matching masks found for any text prompt.") | |
| # status_message is already set | |
| # Save for debugging | |
| if output_image: | |
| try: | |
| debug_path = "debug_fastsam_text_output.png" | |
| output_image.save(debug_path) | |
| print(f"Saved debug output to {debug_path}") | |
| except Exception as save_err: | |
| print(f"Failed to save debug image: {save_err}") | |
| return output_image, status_message | |
| except Exception as e: | |
| print(f"Error during FastSAM text-prompted processing: {e}") | |
| traceback.print_exc() | |
| # Return original image and error message | |
| return image_pil, f"Error during processing: {e}" | |
| # --- Gradio Interface --- | |
| print("Attempting to preload models...") | |
| load_clip_model() # Preload CLIP | |
| load_fastsam_model() # Preload FastSAM | |
| print("Preloading finished (check logs above for errors).") | |
| # --- Gradio Interface Definition --- | |
| # (Your Gradio Blocks code remains largely the same, but ensure the outputs match the function returns) | |
| with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
| gr.Markdown("# CLIP & FastSAM Demo") | |
| gr.Markdown("Explore Zero-Shot Classification, 'Segment Everything', and Text-Prompted Segmentation.") | |
| with gr.Tabs(): | |
| # --- CLIP Tab --- | |
| with gr.TabItem("CLIP Zero-Shot Classification"): | |
| # ... (CLIP UI definition - seems ok) ... | |
| clip_button.click( | |
| run_clip_zero_shot, | |
| inputs=[clip_input_image, clip_text_labels], | |
| # Output matches: Label (dict/str), Image (PIL/None) | |
| outputs=[clip_output_label, clip_output_image_display] | |
| ) | |
| # ... (CLIP Examples - seems ok) ... | |
| # --- FastSAM Everything Tab --- | |
| with gr.TabItem("FastSAM Segment Everything"): | |
| gr.Markdown("Upload an image to segment all objects/regions.") | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| fastsam_input_image_all = gr.Image(type="pil", label="Input Image") | |
| with gr.Row(): | |
| fastsam_conf_all = gr.Slider(minimum=0.1, maximum=1.0, value=0.4, step=0.05, label="Confidence Threshold") | |
| fastsam_iou_all = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="IoU Threshold") | |
| fastsam_button_all = gr.Button("Run FastSAM Segmentation", variant="primary") | |
| with gr.Column(scale=1): | |
| # Output for the image | |
| fastsam_output_image_all = gr.Image(type="pil", label="Segmented Image") | |
| # Add a Textbox for status messages/errors | |
| fastsam_status_all = gr.Textbox(label="Status", interactive=False) | |
| fastsam_button_all.click( | |
| run_fastsam_segmentation, | |
| inputs=[fastsam_input_image_all, fastsam_conf_all, fastsam_iou_all], | |
| # Outputs: Image (PIL/None), Status (str) | |
| outputs=[fastsam_output_image_all, fastsam_status_all] # Updated outputs | |
| ) | |
| # Update examples if needed to match new output structure (add None/str for status) | |
| # Note: Examples might need adjustment if they expect only image output | |
| gr.Examples( | |
| examples=[ | |
| ["examples/dogs.jpg", 0.4, 0.9], | |
| ["examples/fruits.jpg", 0.5, 0.8], | |
| ["examples/lion.jpg", 0.45, 0.9], | |
| ], | |
| inputs=[fastsam_input_image_all, fastsam_conf_all, fastsam_iou_all], | |
| # Need to adjust outputs for examples if function signature changed | |
| # This might require a wrapper if examples expect single output | |
| # For now, comment out example outputs or adjust function signature for examples | |
| outputs=[fastsam_output_image_all, fastsam_status_all], | |
| fn=run_fastsam_segmentation, | |
| cache_examples=False, # Keep False for debugging | |
| ) | |
| # --- Text-Prompted Segmentation Tab --- | |
| with gr.TabItem("Text-Prompted Segmentation"): | |
| gr.Markdown("Upload an image and provide comma-separated prompts (e.g., 'person, dog').") | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| prompt_input_image = gr.Image(type="pil", label="Input Image") | |
| prompt_text_input = gr.Textbox(label="Comma-Separated Text Prompts", placeholder="e.g., glasses, watch") | |
| with gr.Row(): | |
| prompt_conf = gr.Slider(minimum=0.1, maximum=1.0, value=0.4, step=0.05, label="Confidence Threshold") | |
| prompt_iou = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="IoU Threshold") | |
| prompt_button = gr.Button("Segment by Text", variant="primary") | |
| with gr.Column(scale=1): | |
| # Output Image | |
| prompt_output_image = gr.Image(type="pil", label="Text-Prompted Segmentation") | |
| # Status Textbox (already exists, correctly) | |
| prompt_status_message = gr.Textbox(label="Status", interactive=False) | |
| prompt_button.click( | |
| run_text_prompted_segmentation, | |
| inputs=[prompt_input_image, prompt_text_input, prompt_conf, prompt_iou], | |
| # Outputs: Image (PIL/None), Status (str) - Matches function | |
| outputs=[prompt_output_image, prompt_status_message] | |
| ) | |
| # Update examples similarly if needed | |
| gr.Examples( | |
| examples=[ | |
| ["examples/dog_bike.jpg", "person, bicycle", 0.4, 0.9], | |
| ["examples/astronaut.jpg", "person, helmet", 0.35, 0.9], | |
| ["examples/dogs.jpg", "dog", 0.4, 0.9], | |
| ["examples/fruits.jpg", "banana, apple", 0.5, 0.8], | |
| ["examples/teacher.jpg", "person, glasses", 0.4, 0.9], | |
| ], | |
| inputs=[prompt_input_image, prompt_text_input, prompt_conf, prompt_iou], | |
| outputs=[prompt_output_image, prompt_status_message], | |
| fn=run_text_prompted_segmentation, | |
| cache_examples=False, # Keep False for debugging | |
| ) | |
| # --- Example File Download --- | |
| # (Download logic seems okay, ensure 'wget' is installed: pip install wget) | |
| if not os.path.exists("examples"): | |
| os.makedirs("examples") | |
| print("Created 'examples' directory.") | |
| example_files = { | |
| "astronaut.jpg": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/d1/Astronaut_-_St._Jean_Bay.jpg/640px-Astronaut_-_St._Jean_Bay.jpg", | |
| "dog_bike.jpg": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/gradio/outputs_multimodal.jpg", | |
| "clip_logo.png": "https://raw.githubusercontent.com/openai/CLIP/main/CLIP.png", | |
| "dogs.jpg": "https://raw.githubusercontent.com/ultralytics/assets/main/im/image8.jpg", | |
| "fruits.jpg": "https://raw.githubusercontent.com/ultralytics/assets/main/im/image9.jpg", | |
| "lion.jpg": "https://huggingface.co/spaces/gradio/image-segmentation/resolve/main/images/lion.jpg", | |
| "teacher.jpg": "https://images.pexels.com/photos/848117/pexels-photo-848117.jpeg?auto=compress&cs=tinysrgb&w=600" | |
| } | |
| def download_example_file(filename, url, retries=3): | |
| filepath = os.path.join("examples", filename) | |
| if not os.path.exists(filepath): | |
| print(f"Attempting to download {filename}...") | |
| for attempt in range(retries): | |
| try: | |
| wget.download(url, filepath) | |
| print(f"Downloaded {filename} successfully.") | |
| return # Exit function on success | |
| except Exception as e: | |
| print(f"Download attempt {attempt + 1}/{retries} for {filename} failed: {e}") | |
| if os.path.exists(filepath): # Clean up partial download | |
| try: os.remove(filepath) | |
| except OSError: pass | |
| if attempt + 1 == retries: | |
| print(f"Failed to download {filename} after {retries} attempts.") | |
| else: | |
| print(f"Example file {filename} already exists.") | |
| # Trigger downloads | |
| for filename, url in example_files.items(): | |
| download_example_file(filename, url) | |
| print("Example file check/download complete.") | |
| # --- Launch App --- | |
| if __name__ == "__main__": | |
| print("Launching Gradio Demo...") | |
| demo.launch(debug=True) # Keep debug=True |