Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -22,8 +22,54 @@ def fig2img(fig):
|
|
| 22 |
return img
|
| 23 |
|
| 24 |
def plot(annotations, prompt_process, mask_random_color=True, better_quality=True, retina=True, with_contours=True):
|
| 25 |
-
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
def segment_image(input_image, object_name):
|
| 29 |
try:
|
|
|
|
| 22 |
return img
|
| 23 |
|
| 24 |
def plot(annotations, prompt_process, mask_random_color=True, better_quality=True, retina=True, with_contours=True):
|
| 25 |
+
for ann in annotations:
|
| 26 |
+
image = ann.orig_img[..., ::-1] # BGR to RGB
|
| 27 |
+
original_h, original_w = ann.orig_shape
|
| 28 |
+
fig = plt.figure(figsize=(original_w / 100, original_h / 100))
|
| 29 |
+
plt.subplots_adjust(top=1, bottom=0, right=1, left=0, hspace=0, wspace=0)
|
| 30 |
+
plt.margins(0, 0)
|
| 31 |
+
plt.gca().xaxis.set_major_locator(plt.NullLocator())
|
| 32 |
+
plt.gca().yaxis.set_major_locator(plt.NullLocator())
|
| 33 |
+
plt.imshow(image)
|
| 34 |
+
|
| 35 |
+
if ann.masks is not None:
|
| 36 |
+
masks = ann.masks.data
|
| 37 |
+
if better_quality:
|
| 38 |
+
if isinstance(masks[0], torch.Tensor):
|
| 39 |
+
masks = np.array(masks.cpu())
|
| 40 |
+
for i, mask in enumerate(masks):
|
| 41 |
+
mask = cv2.morphologyEx(mask.astype(np.uint8), cv2.MORPH_CLOSE, np.ones((3, 3), np.uint8))
|
| 42 |
+
masks[i] = cv2.morphologyEx(mask.astype(np.uint8), cv2.MORPH_OPEN, np.ones((8, 8), np.uint8))
|
| 43 |
+
|
| 44 |
+
prompt_process.fast_show_mask(
|
| 45 |
+
masks,
|
| 46 |
+
plt.gca(),
|
| 47 |
+
random_color=mask_random_color,
|
| 48 |
+
bbox=None,
|
| 49 |
+
points=None,
|
| 50 |
+
pointlabel=None,
|
| 51 |
+
retinamask=retina,
|
| 52 |
+
target_height=original_h,
|
| 53 |
+
target_width=original_w,
|
| 54 |
+
)
|
| 55 |
+
|
| 56 |
+
if with_contours:
|
| 57 |
+
contour_all = []
|
| 58 |
+
temp = np.zeros((original_h, original_w, 1))
|
| 59 |
+
for i, mask in enumerate(masks):
|
| 60 |
+
mask = mask.astype(np.uint8)
|
| 61 |
+
if not retina:
|
| 62 |
+
mask = cv2.resize(mask, (original_w, original_h), interpolation=cv2.INTER_NEAREST)
|
| 63 |
+
contours, _ = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
| 64 |
+
contour_all.extend(iter(contours))
|
| 65 |
+
cv2.drawContours(temp, contour_all, -1, (255, 255, 255), 2)
|
| 66 |
+
color = np.array([0 / 255, 0 / 255, 1.0, 0.8])
|
| 67 |
+
contour_mask = temp / 255 * color.reshape(1, 1, -1)
|
| 68 |
+
plt.imshow(contour_mask)
|
| 69 |
+
|
| 70 |
+
plt.axis("off")
|
| 71 |
+
plt.close()
|
| 72 |
+
return fig2img(fig)
|
| 73 |
|
| 74 |
def segment_image(input_image, object_name):
|
| 75 |
try:
|