Spaces:
Sleeping
Sleeping
| import os | |
| import torch | |
| import gradio as gr | |
| from PIL import Image | |
| import torch.nn.functional as F | |
| from torchvision import transforms as tfms | |
| from diffusers import DiffusionPipeline | |
| # Determine the appropriate device and dtype | |
| torch_device = "cuda" if torch.cuda.is_available() else "cpu" | |
| torch_dtype = torch.float16 if torch_device == "cuda" else torch.float32 | |
| # Load the pipeline | |
| model_path = "CompVis/stable-diffusion-v1-4" | |
| sd_pipeline = DiffusionPipeline.from_pretrained( | |
| model_path, | |
| torch_dtype=torch_dtype, | |
| low_cpu_mem_usage=True if torch_device == "cpu" else False | |
| ).to(torch_device) | |
| # Load textual inversions | |
| sd_pipeline.load_textual_inversion("sd-concepts-library/illustration-style") | |
| sd_pipeline.load_textual_inversion("sd-concepts-library/line-art") | |
| sd_pipeline.load_textual_inversion("sd-concepts-library/hitokomoru-style-nao") | |
| sd_pipeline.load_textual_inversion("sd-concepts-library/style-of-marc-allante") | |
| sd_pipeline.load_textual_inversion("sd-concepts-library/midjourney-style") | |
| sd_pipeline.load_textual_inversion("sd-concepts-library/hanfu-anime-style") | |
| sd_pipeline.load_textual_inversion("sd-concepts-library/birb-style") | |
| # Update style token dictionary | |
| style_token_dict = { | |
| "Illustration Style": '<illustration-style>', | |
| "Line Art": '<line-art>', | |
| "Hitokomoru Style": '<hitokomoru-style-nao>', | |
| "Marc Allante": '<Marc_Allante>', | |
| "Midjourney": '<midjourney-style>', | |
| "Hanfu Anime": '<hanfu-anime-style>', | |
| "Birb Style": '<birb-style>' | |
| } | |
| def apply_guidance(image, guidance_method, loss_scale): | |
| # Convert PIL Image to tensor | |
| img_tensor = tfms.ToTensor()(image).unsqueeze(0).to(torch_device) | |
| if guidance_method == 'Grayscale': | |
| gray = tfms.Grayscale(3)(img_tensor) | |
| guided = img_tensor + (gray - img_tensor) * (loss_scale / 10000) | |
| elif guidance_method == 'Bright': | |
| bright = F.relu(img_tensor) # Simple brightness increase | |
| guided = img_tensor + (bright - img_tensor) * (loss_scale / 10000) | |
| elif guidance_method == 'Contrast': | |
| mean = img_tensor.mean() | |
| contrast = (img_tensor - mean) * 2 + mean | |
| guided = img_tensor + (contrast - img_tensor) * (loss_scale / 10000) | |
| elif guidance_method == 'Symmetry': | |
| flipped = torch.flip(img_tensor, [3]) # Flip horizontally | |
| guided = img_tensor + (flipped - img_tensor) * (loss_scale / 10000) | |
| elif guidance_method == 'Saturation': | |
| saturated = tfms.functional.adjust_saturation(img_tensor, 2) | |
| guided = img_tensor + (saturated - img_tensor) * (loss_scale / 10000) | |
| else: | |
| return image | |
| # Convert back to PIL Image | |
| guided = guided.squeeze(0).clamp(0, 1) | |
| guided = (guided * 255).byte().cpu().permute(1, 2, 0).numpy() | |
| return Image.fromarray(guided) | |
| def inference(text, style, inference_step, guidance_scale, seed, guidance_method, loss_scale, image_size): | |
| prompt = text + " " + style_token_dict[style] | |
| # Convert image_size from string to tuple of integers | |
| size = tuple(map(int, image_size.split('x'))) | |
| # Generate image with pipeline | |
| image_pipeline = sd_pipeline( | |
| prompt, | |
| num_inference_steps=inference_step, | |
| guidance_scale=guidance_scale, | |
| generator=torch.Generator(device=torch_device).manual_seed(seed), | |
| height=size[1], | |
| width=size[0] | |
| ).images[0] | |
| # Apply guidance | |
| image_guide = apply_guidance(image_pipeline, guidance_method, loss_scale) | |
| return image_pipeline, image_guide | |
| # HTML Template | |
| css = """ | |
| <style> | |
| body { | |
| background: linear-gradient(135deg, #6e48aa, #9d50bb, #f4d03f); | |
| font-family: 'Arial', sans-serif; | |
| color: #333; | |
| } | |
| #app-header { | |
| text-align: center; | |
| background: rgba(255, 255, 255, 0.9); | |
| padding: 30px; | |
| border-radius: 20px; | |
| box-shadow: 0 10px 20px rgba(0, 0, 0, 0.2); | |
| position: relative; | |
| overflow: hidden; | |
| margin-bottom: 30px; | |
| } | |
| #app-header::before { | |
| content: ""; | |
| position: absolute; | |
| top: -50%; | |
| left: -50%; | |
| width: 200%; | |
| height: 200%; | |
| background: radial-gradient(circle, rgba(255,255,255,0.8) 0%, rgba(255,255,255,0) 70%); | |
| animation: shimmer 10s infinite linear; | |
| } | |
| @keyframes shimmer { | |
| 0% { transform: rotate(0deg); } | |
| 100% { transform: rotate(360deg); } | |
| } | |
| #app-header h1 { | |
| color: #6e48aa; | |
| font-size: 2.5em; | |
| margin-bottom: 15px; | |
| text-shadow: 2px 2px 4px rgba(0,0,0,0.1); | |
| } | |
| #app-header p { | |
| font-size: 1.2em; | |
| color: #555; | |
| } | |
| .concept-container { | |
| display: flex; | |
| justify-content: center; | |
| gap: 30px; | |
| margin-top: 30px; | |
| flex-wrap: wrap; | |
| } | |
| .concept { | |
| position: relative; | |
| transition: transform 0.3s, box-shadow 0.3s; | |
| border-radius: 15px; | |
| overflow: hidden; | |
| background: white; | |
| box-shadow: 0 5px 15px rgba(0,0,0,0.1); | |
| } | |
| .concept:hover { | |
| transform: translateY(-10px) rotate(3deg); | |
| box-shadow: 0 15px 30px rgba(0,0,0,0.2); | |
| } | |
| .concept img { | |
| width: 120px; | |
| height: 120px; | |
| object-fit: cover; | |
| border-radius: 15px 15px 0 0; | |
| } | |
| .concept-description { | |
| background-color: #6e48aa; | |
| color: white; | |
| padding: 10px; | |
| font-size: 0.9em; | |
| text-align: center; | |
| } | |
| .artifact { | |
| position: absolute; | |
| background: radial-gradient(circle, rgba(255,255,255,0.8) 0%, rgba(255,255,255,0) 70%); | |
| border-radius: 50%; | |
| opacity: 0.5; | |
| } | |
| .artifact.large { | |
| width: 400px; | |
| height: 400px; | |
| top: -100px; | |
| left: -200px; | |
| animation: float 20s infinite ease-in-out; | |
| } | |
| .artifact.medium { | |
| width: 300px; | |
| height: 300px; | |
| bottom: -150px; | |
| right: -150px; | |
| animation: float 15s infinite ease-in-out reverse; | |
| } | |
| .artifact.small { | |
| width: 150px; | |
| height: 150px; | |
| top: 50%; | |
| left: 50%; | |
| transform: translate(-50%, -50%); | |
| animation: pulse 5s infinite alternate; | |
| } | |
| @keyframes float { | |
| 0%, 100% { transform: translateY(0) rotate(0deg); } | |
| 50% { transform: translateY(-20px) rotate(10deg); } | |
| } | |
| @keyframes pulse { | |
| 0% { transform: scale(1); opacity: 0.5; } | |
| 100% { transform: scale(1.1); opacity: 0.8; } | |
| } | |
| </style> | |
| <div id="app-header"> | |
| <div class="artifact large"></div> | |
| <div class="artifact medium"></div> | |
| <div class="artifact small"></div> | |
| <h1>Dreamscape Creator</h1> | |
| <p>Unleash your imagination with AI-powered generative art</p> | |
| <div class="concept-container"> | |
| <div class="concept"> | |
| <img src="https://example.com/illustration-style.jpg" alt="Illustration Style"> | |
| <div class="concept-description">Illustration Style</div> | |
| </div> | |
| <div class="concept"> | |
| <img src="https://example.com/line-art.jpg" alt="Line Art"> | |
| <div class="concept-description">Line Art</div> | |
| </div> | |
| <div class="concept"> | |
| <img src="https://example.com/midjourney-style.jpg" alt="Midjourney Style"> | |
| <div class="concept-description">Midjourney Style</div> | |
| </div> | |
| <div class="concept"> | |
| <img src="https://example.com/hanfu-anime-style.jpg" alt="Hanfu Anime"> | |
| <div class="concept-description">Hanfu Anime</div> | |
| </div> | |
| </div> | |
| </div> | |
| """ | |
| with gr.Blocks(css=css) as demo: | |
| gr.HTML("<div class='header'><h1>🌟 Dreamscape Creator</h1></div>") | |
| with gr.Row(): | |
| text = gr.Textbox(label="Prompt", placeholder="Describe your dreamscape...") | |
| style = gr.Dropdown(label="Style", choices=list(style_token_dict.keys()), value="Illustration Style") | |
| with gr.Row(): | |
| inference_step = gr.Slider(1, 50, 20, step=1, label="Inference steps") | |
| guidance_scale = gr.Slider(1, 10, 7.5, step=0.1, label="Guidance scale") | |
| seed = gr.Slider(0, 10000, 42, step=1, label="Seed") | |
| with gr.Row(): | |
| guidance_method = gr.Dropdown(label="Guidance method", choices=['Grayscale', 'Bright', 'Contrast', 'Symmetry', 'Saturation'], value="Grayscale") | |
| loss_scale = gr.Slider(100, 10000, 200, step=100, label="Loss scale") | |
| with gr.Row(): | |
| image_size = gr.Radio(["256x256", "512x512"], label="Image Size", value="256x256") | |
| with gr.Row(): | |
| generate_button = gr.Button("Create Dreamscape", variant="primary") | |
| with gr.Row(): | |
| output_image = gr.Image(label="Your Dreamscape") | |
| output_image_guided = gr.Image(label="Guided Dreamscape") | |
| generate_button.click( | |
| inference, | |
| inputs=[text, style, inference_step, guidance_scale, seed, guidance_method, loss_scale, image_size], | |
| outputs=[output_image, output_image_guided] | |
| ) | |
| gr.Examples( | |
| examples=[ | |
| ["Floating island with waterfalls", 'Illustration Style', 50, 7.5, 42, 'Grayscale', 200, "256x256"], | |
| ["Futuristic city with neon lights", 'Line Art', 30, 8.0, 123, 'Bright', 300, "256x256"], | |
| ["Japanese garden with cherry blossoms", 'Hitokomoru Style', 40, 7.0, 789, 'Contrast', 250, "256x256"], | |
| ], | |
| inputs=[text, style, inference_step, guidance_scale, seed, guidance_method, loss_scale, image_size], | |
| outputs=[output_image, output_image_guided], | |
| fn=inference, | |
| cache_examples=True, | |
| examples_per_page=5 | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() |