Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,13 +1,93 @@
|
|
| 1 |
import os
|
| 2 |
import torch
|
| 3 |
import gradio as gr
|
| 4 |
-
from tqdm import tqdm
|
| 5 |
from PIL import Image
|
| 6 |
import torch.nn.functional as F
|
| 7 |
from torchvision import transforms as tfms
|
| 8 |
-
from
|
| 9 |
-
from diffusers import AutoencoderKL, LMSDiscreteScheduler, UNet2DConditionModel, DiffusionPipeline
|
| 10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
HTML_TEMPLATE = """
|
| 12 |
<style>
|
| 13 |
body {
|
|
@@ -145,105 +225,7 @@ HTML_TEMPLATE = """
|
|
| 145 |
</div>
|
| 146 |
"""
|
| 147 |
|
| 148 |
-
|
| 149 |
-
if "mps" == torch_device: os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = "1"
|
| 150 |
-
|
| 151 |
-
# Load the pipeline
|
| 152 |
-
model_path = "CompVis/stable-diffusion-v1-4"
|
| 153 |
-
sd_pipeline = DiffusionPipeline.from_pretrained(
|
| 154 |
-
model_path,
|
| 155 |
-
low_cpu_mem_usage=True,
|
| 156 |
-
torch_dtype=torch.float32
|
| 157 |
-
).to(torch_device)
|
| 158 |
-
|
| 159 |
-
# Load textual inversions
|
| 160 |
-
sd_pipeline.load_textual_inversion("sd-concepts-library/illustration-style")
|
| 161 |
-
sd_pipeline.load_textual_inversion("sd-concepts-library/line-art")
|
| 162 |
-
sd_pipeline.load_textual_inversion("sd-concepts-library/hitokomoru-style-nao")
|
| 163 |
-
sd_pipeline.load_textual_inversion("sd-concepts-library/style-of-marc-allante")
|
| 164 |
-
sd_pipeline.load_textual_inversion("sd-concepts-library/midjourney-style")
|
| 165 |
-
sd_pipeline.load_textual_inversion("sd-concepts-library/hanfu-anime-style")
|
| 166 |
-
sd_pipeline.load_textual_inversion("sd-concepts-library/birb-style")
|
| 167 |
-
|
| 168 |
-
# Update style token dictionary
|
| 169 |
-
style_token_dict = {
|
| 170 |
-
"Illustration Style": '<illustration-style>',
|
| 171 |
-
"Line Art":'<line-art>',
|
| 172 |
-
"Hitokomoru Style":'<hitokomoru-style-nao>',
|
| 173 |
-
"Marc Allante": '<Marc_Allante>',
|
| 174 |
-
"Midjourney":'<midjourney-style>',
|
| 175 |
-
"Hanfu Anime": '<hanfu-anime-style>',
|
| 176 |
-
"Birb Style": '<birb-style>'
|
| 177 |
-
}
|
| 178 |
-
|
| 179 |
-
def apply_guidance(image, guidance_method, loss_scale):
|
| 180 |
-
# Convert PIL Image to tensor
|
| 181 |
-
img_tensor = tfms.ToTensor()(image).unsqueeze(0).to(torch_device)
|
| 182 |
-
|
| 183 |
-
if guidance_method == 'Grayscale':
|
| 184 |
-
gray = tfms.Grayscale(3)(img_tensor)
|
| 185 |
-
guided = img_tensor + (gray - img_tensor) * (loss_scale / 10000)
|
| 186 |
-
elif guidance_method == 'Bright':
|
| 187 |
-
bright = F.relu(img_tensor) # Simple brightness increase
|
| 188 |
-
guided = img_tensor + (bright - img_tensor) * (loss_scale / 10000)
|
| 189 |
-
elif guidance_method == 'Contrast':
|
| 190 |
-
mean = img_tensor.mean()
|
| 191 |
-
contrast = (img_tensor - mean) * 2 + mean
|
| 192 |
-
guided = img_tensor + (contrast - img_tensor) * (loss_scale / 10000)
|
| 193 |
-
elif guidance_method == 'Symmetry':
|
| 194 |
-
flipped = torch.flip(img_tensor, [3]) # Flip horizontally
|
| 195 |
-
guided = img_tensor + (flipped - img_tensor) * (loss_scale / 10000)
|
| 196 |
-
elif guidance_method == 'Saturation':
|
| 197 |
-
saturated = tfms.functional.adjust_saturation(img_tensor, 2)
|
| 198 |
-
guided = img_tensor + (saturated - img_tensor) * (loss_scale / 10000)
|
| 199 |
-
else:
|
| 200 |
-
return image
|
| 201 |
-
|
| 202 |
-
# Convert back to PIL Image
|
| 203 |
-
guided = guided.squeeze(0).clamp(0, 1)
|
| 204 |
-
guided = (guided * 255).byte().cpu().permute(1, 2, 0).numpy()
|
| 205 |
-
return Image.fromarray(guided)
|
| 206 |
-
|
| 207 |
-
def generate_with_guidance(prompt, num_inference_steps, guidance_scale, seed, guidance_method, loss_scale):
|
| 208 |
-
# Generate image with pipeline
|
| 209 |
-
generator = torch.Generator(device=torch_device).manual_seed(seed)
|
| 210 |
-
image = sd_pipeline(
|
| 211 |
-
prompt,
|
| 212 |
-
num_inference_steps=num_inference_steps,
|
| 213 |
-
guidance_scale=guidance_scale,
|
| 214 |
-
generator=generator
|
| 215 |
-
).images[0]
|
| 216 |
-
|
| 217 |
-
# Apply guidance
|
| 218 |
-
guided_image = apply_guidance(image, guidance_method, loss_scale)
|
| 219 |
-
|
| 220 |
-
return guided_image
|
| 221 |
-
|
| 222 |
-
def inference(text, style, inference_step, guidance_scale, seed, guidance_method, loss_scale):
|
| 223 |
-
prompt = text + " " + style_token_dict[style]
|
| 224 |
-
|
| 225 |
-
# Generate image with pipeline
|
| 226 |
-
image_pipeline = sd_pipeline(
|
| 227 |
-
prompt,
|
| 228 |
-
num_inference_steps=inference_step,
|
| 229 |
-
guidance_scale=guidance_scale,
|
| 230 |
-
generator=torch.Generator(device=torch_device).manual_seed(seed)
|
| 231 |
-
).images[0]
|
| 232 |
-
|
| 233 |
-
# Generate image with guidance
|
| 234 |
-
image_guide = generate_with_guidance(prompt, inference_step, guidance_scale, seed, guidance_method, loss_scale)
|
| 235 |
-
|
| 236 |
-
return image_pipeline, image_guide
|
| 237 |
-
|
| 238 |
-
title = "Generative with Textual Inversion and Guidance"
|
| 239 |
-
description = "A Gradio interface to infer Stable Diffusion and generate images with different art styles and guidance methods"
|
| 240 |
-
examples = [
|
| 241 |
-
["A majestic castle on a floating island", 'Illustration Style', 10, 7.5, 42, 'Grayscale', 200]
|
| 242 |
-
]
|
| 243 |
-
|
| 244 |
-
title = "Generative Art with Textual Inversion and Guidance"
|
| 245 |
-
description = "Create unique artworks using Stable Diffusion with various styles and guidance methods."
|
| 246 |
-
|
| 247 |
with gr.Blocks(css=HTML_TEMPLATE) as demo:
|
| 248 |
gr.HTML(HTML_TEMPLATE)
|
| 249 |
with gr.Row():
|
|
@@ -280,4 +262,5 @@ with gr.Blocks(css=HTML_TEMPLATE) as demo:
|
|
| 280 |
cache_examples=True,
|
| 281 |
)
|
| 282 |
|
| 283 |
-
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
import torch
|
| 3 |
import gradio as gr
|
|
|
|
| 4 |
from PIL import Image
|
| 5 |
import torch.nn.functional as F
|
| 6 |
from torchvision import transforms as tfms
|
| 7 |
+
from diffusers import DiffusionPipeline
|
|
|
|
| 8 |
|
| 9 |
+
# Determine the appropriate device and dtype
|
| 10 |
+
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 11 |
+
torch_dtype = torch.float16 if torch_device == "cuda" else torch.float32
|
| 12 |
+
|
| 13 |
+
# Load the pipeline
|
| 14 |
+
model_path = "CompVis/stable-diffusion-v1-4"
|
| 15 |
+
sd_pipeline = DiffusionPipeline.from_pretrained(
|
| 16 |
+
model_path,
|
| 17 |
+
torch_dtype=torch_dtype,
|
| 18 |
+
low_cpu_mem_usage=True if torch_device == "cpu" else False
|
| 19 |
+
).to(torch_device)
|
| 20 |
+
|
| 21 |
+
# Load textual inversions
|
| 22 |
+
sd_pipeline.load_textual_inversion("sd-concepts-library/illustration-style")
|
| 23 |
+
sd_pipeline.load_textual_inversion("sd-concepts-library/line-art")
|
| 24 |
+
sd_pipeline.load_textual_inversion("sd-concepts-library/hitokomoru-style-nao")
|
| 25 |
+
sd_pipeline.load_textual_inversion("sd-concepts-library/style-of-marc-allante")
|
| 26 |
+
sd_pipeline.load_textual_inversion("sd-concepts-library/midjourney-style")
|
| 27 |
+
sd_pipeline.load_textual_inversion("sd-concepts-library/hanfu-anime-style")
|
| 28 |
+
sd_pipeline.load_textual_inversion("sd-concepts-library/birb-style")
|
| 29 |
+
|
| 30 |
+
# Update style token dictionary
|
| 31 |
+
style_token_dict = {
|
| 32 |
+
"Illustration Style": '<illustration-style>',
|
| 33 |
+
"Line Art": '<line-art>',
|
| 34 |
+
"Hitokomoru Style": '<hitokomoru-style-nao>',
|
| 35 |
+
"Marc Allante": '<Marc_Allante>',
|
| 36 |
+
"Midjourney": '<midjourney-style>',
|
| 37 |
+
"Hanfu Anime": '<hanfu-anime-style>',
|
| 38 |
+
"Birb Style": '<birb-style>'
|
| 39 |
+
}
|
| 40 |
+
|
| 41 |
+
def apply_guidance(image, guidance_method, loss_scale):
|
| 42 |
+
# Convert PIL Image to tensor
|
| 43 |
+
img_tensor = tfms.ToTensor()(image).unsqueeze(0).to(torch_device)
|
| 44 |
+
|
| 45 |
+
if guidance_method == 'Grayscale':
|
| 46 |
+
gray = tfms.Grayscale(3)(img_tensor)
|
| 47 |
+
guided = img_tensor + (gray - img_tensor) * (loss_scale / 10000)
|
| 48 |
+
elif guidance_method == 'Bright':
|
| 49 |
+
bright = F.relu(img_tensor) # Simple brightness increase
|
| 50 |
+
guided = img_tensor + (bright - img_tensor) * (loss_scale / 10000)
|
| 51 |
+
elif guidance_method == 'Contrast':
|
| 52 |
+
mean = img_tensor.mean()
|
| 53 |
+
contrast = (img_tensor - mean) * 2 + mean
|
| 54 |
+
guided = img_tensor + (contrast - img_tensor) * (loss_scale / 10000)
|
| 55 |
+
elif guidance_method == 'Symmetry':
|
| 56 |
+
flipped = torch.flip(img_tensor, [3]) # Flip horizontally
|
| 57 |
+
guided = img_tensor + (flipped - img_tensor) * (loss_scale / 10000)
|
| 58 |
+
elif guidance_method == 'Saturation':
|
| 59 |
+
saturated = tfms.functional.adjust_saturation(img_tensor, 2)
|
| 60 |
+
guided = img_tensor + (saturated - img_tensor) * (loss_scale / 10000)
|
| 61 |
+
else:
|
| 62 |
+
return image
|
| 63 |
+
|
| 64 |
+
# Convert back to PIL Image
|
| 65 |
+
guided = guided.squeeze(0).clamp(0, 1)
|
| 66 |
+
guided = (guided * 255).byte().cpu().permute(1, 2, 0).numpy()
|
| 67 |
+
return Image.fromarray(guided)
|
| 68 |
+
|
| 69 |
+
def inference(text, style, inference_step, guidance_scale, seed, guidance_method, loss_scale, image_size):
|
| 70 |
+
prompt = text + " " + style_token_dict[style]
|
| 71 |
+
|
| 72 |
+
# Convert image_size from string to tuple of integers
|
| 73 |
+
size = tuple(map(int, image_size.split('x')))
|
| 74 |
+
|
| 75 |
+
# Generate image with pipeline
|
| 76 |
+
image_pipeline = sd_pipeline(
|
| 77 |
+
prompt,
|
| 78 |
+
num_inference_steps=inference_step,
|
| 79 |
+
guidance_scale=guidance_scale,
|
| 80 |
+
generator=torch.Generator(device=torch_device).manual_seed(seed),
|
| 81 |
+
height=size[1],
|
| 82 |
+
width=size[0]
|
| 83 |
+
).images[0]
|
| 84 |
+
|
| 85 |
+
# Apply guidance
|
| 86 |
+
image_guide = apply_guidance(image_pipeline, guidance_method, loss_scale)
|
| 87 |
+
|
| 88 |
+
return image_pipeline, image_guide
|
| 89 |
+
|
| 90 |
+
# HTML Template
|
| 91 |
HTML_TEMPLATE = """
|
| 92 |
<style>
|
| 93 |
body {
|
|
|
|
| 225 |
</div>
|
| 226 |
"""
|
| 227 |
|
| 228 |
+
# Gradio Interface
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 229 |
with gr.Blocks(css=HTML_TEMPLATE) as demo:
|
| 230 |
gr.HTML(HTML_TEMPLATE)
|
| 231 |
with gr.Row():
|
|
|
|
| 262 |
cache_examples=True,
|
| 263 |
)
|
| 264 |
|
| 265 |
+
if __name__ == "__main__":
|
| 266 |
+
demo.launch()
|