Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -4,31 +4,41 @@ import gradio as gr
|
|
| 4 |
from PIL import Image
|
| 5 |
import torch.nn.functional as F
|
| 6 |
from torchvision import transforms as tfms
|
| 7 |
-
from diffusers import DiffusionPipeline
|
| 8 |
-
#
|
| 9 |
|
| 10 |
-
#
|
| 11 |
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 12 |
torch_dtype = torch.float16 if torch_device == "cuda" else torch.float32
|
|
|
|
| 13 |
|
| 14 |
-
#
|
| 15 |
model_path = "CompVis/stable-diffusion-v1-4"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
sd_pipeline = DiffusionPipeline.from_pretrained(
|
| 17 |
model_path,
|
| 18 |
torch_dtype=torch_dtype,
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
).to(torch_device)
|
| 21 |
|
| 22 |
-
#
|
| 23 |
-
|
| 24 |
-
sd_pipeline.
|
| 25 |
-
|
| 26 |
-
sd_pipeline.
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
|
| 31 |
-
# Update style token dictionary
|
| 32 |
style_token_dict = {
|
| 33 |
"Illustration Style": '<illustration-style>',
|
| 34 |
"Line Art": '<line-art>',
|
|
@@ -39,59 +49,76 @@ style_token_dict = {
|
|
| 39 |
"Birb Style": '<birb-style>'
|
| 40 |
}
|
| 41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
def apply_guidance(image, guidance_method, loss_scale):
|
| 43 |
-
# Convert PIL Image to tensor
|
| 44 |
img_tensor = tfms.ToTensor()(image).unsqueeze(0).to(torch_device)
|
| 45 |
-
|
|
|
|
| 46 |
if guidance_method == 'Grayscale':
|
| 47 |
-
gray = tfms.Grayscale(3)(img_tensor)
|
| 48 |
-
guided = img_tensor + (gray - img_tensor) *
|
| 49 |
elif guidance_method == 'Bright':
|
| 50 |
-
|
| 51 |
-
guided = img_tensor + (bright - img_tensor) * (loss_scale / 10000)
|
| 52 |
elif guidance_method == 'Contrast':
|
| 53 |
mean = img_tensor.mean()
|
| 54 |
-
|
| 55 |
-
guided = img_tensor + (contrast - img_tensor) * (loss_scale / 10000)
|
| 56 |
elif guidance_method == 'Symmetry':
|
| 57 |
-
flipped = torch.flip(img_tensor, [3])
|
| 58 |
-
guided = img_tensor + (flipped - img_tensor) *
|
| 59 |
elif guidance_method == 'Saturation':
|
| 60 |
-
|
| 61 |
-
guided = img_tensor +
|
|
|
|
| 62 |
else:
|
| 63 |
return image
|
| 64 |
|
| 65 |
-
# Convert back to PIL Image
|
| 66 |
-
guided = guided.squeeze(0).
|
| 67 |
-
|
| 68 |
-
return Image.fromarray(guided)
|
| 69 |
|
|
|
|
|
|
|
| 70 |
def inference(text, style, inference_step, guidance_scale, seed, guidance_method, loss_scale, image_size):
|
| 71 |
-
prompt = text
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
size = tuple(map(int, image_size.split('x')))
|
| 75 |
|
| 76 |
-
# Generate image
|
| 77 |
image_pipeline = sd_pipeline(
|
| 78 |
prompt,
|
| 79 |
num_inference_steps=inference_step,
|
| 80 |
guidance_scale=guidance_scale,
|
| 81 |
-
generator=
|
| 82 |
-
height=
|
| 83 |
-
width=
|
| 84 |
).images[0]
|
| 85 |
|
| 86 |
-
# Apply guidance
|
| 87 |
image_guide = apply_guidance(image_pipeline, guidance_method, loss_scale)
|
| 88 |
-
|
| 89 |
return image_pipeline, image_guide
|
| 90 |
|
| 91 |
-
#
|
| 92 |
-
|
| 93 |
css_and_html = """
|
| 94 |
<style>
|
|
|
|
| 95 |
body {
|
| 96 |
background: linear-gradient(135deg, #1a1c2c, #4a4e69, #9a8c98);
|
| 97 |
font-family: 'Arial', sans-serif;
|
|
@@ -100,162 +127,22 @@ css_and_html = """
|
|
| 100 |
padding: 0;
|
| 101 |
min-height: 100vh;
|
| 102 |
}
|
| 103 |
-
|
| 104 |
-
text-align: center;
|
| 105 |
-
background: rgba(255, 255, 255, 0.1);
|
| 106 |
-
padding: 30px;
|
| 107 |
-
border-radius: 20px;
|
| 108 |
-
box-shadow: 0 10px 30px rgba(0, 0, 0, 0.3);
|
| 109 |
-
position: relative;
|
| 110 |
-
overflow: hidden;
|
| 111 |
-
margin: 20px auto;
|
| 112 |
-
max-width: 800px;
|
| 113 |
-
}
|
| 114 |
-
#app-header::before {
|
| 115 |
-
content: "";
|
| 116 |
-
position: absolute;
|
| 117 |
-
top: -50%;
|
| 118 |
-
left: -50%;
|
| 119 |
-
width: 200%;
|
| 120 |
-
height: 200%;
|
| 121 |
-
background: radial-gradient(circle, rgba(255,255,255,0.1) 0%, rgba(255,255,255,0) 70%);
|
| 122 |
-
animation: shimmer 15s infinite linear;
|
| 123 |
-
}
|
| 124 |
-
@keyframes shimmer {
|
| 125 |
-
0% { transform: rotate(0deg); }
|
| 126 |
-
100% { transform: rotate(360deg); }
|
| 127 |
-
}
|
| 128 |
-
#app-header h1 {
|
| 129 |
-
color: #f2e9e4;
|
| 130 |
-
font-size: 2.5em;
|
| 131 |
-
margin-bottom: 15px;
|
| 132 |
-
text-shadow: 2px 2px 4px rgba(0,0,0,0.5);
|
| 133 |
-
}
|
| 134 |
-
#app-header p {
|
| 135 |
-
font-size: 1.2em;
|
| 136 |
-
color: #c9ada7;
|
| 137 |
-
}
|
| 138 |
-
.concept-container {
|
| 139 |
-
display: flex;
|
| 140 |
-
justify-content: center;
|
| 141 |
-
gap: 20px;
|
| 142 |
-
margin-top: 30px;
|
| 143 |
-
flex-wrap: wrap;
|
| 144 |
-
}
|
| 145 |
-
.concept {
|
| 146 |
-
position: relative;
|
| 147 |
-
transition: transform 0.3s, box-shadow 0.3s;
|
| 148 |
-
border-radius: 15px;
|
| 149 |
-
overflow: hidden;
|
| 150 |
-
background: rgba(255, 255, 255, 0.1);
|
| 151 |
-
box-shadow: 0 5px 15px rgba(0,0,0,0.2);
|
| 152 |
-
width: 150px;
|
| 153 |
-
}
|
| 154 |
-
.concept:hover {
|
| 155 |
-
transform: translateY(-10px) rotate(3deg);
|
| 156 |
-
box-shadow: 0 15px 30px rgba(0,0,0,0.4);
|
| 157 |
-
}
|
| 158 |
-
.concept img {
|
| 159 |
-
width: 100%;
|
| 160 |
-
height: 120px;
|
| 161 |
-
object-fit: cover;
|
| 162 |
-
}
|
| 163 |
-
.concept-description {
|
| 164 |
-
background-color: rgba(110, 72, 170, 0.8);
|
| 165 |
-
color: white;
|
| 166 |
-
padding: 10px;
|
| 167 |
-
font-size: 0.9em;
|
| 168 |
-
text-align: center;
|
| 169 |
-
}
|
| 170 |
-
.artifact {
|
| 171 |
-
position: absolute;
|
| 172 |
-
background: radial-gradient(circle, rgba(255,255,255,0.1) 0%, rgba(255,255,255,0) 70%);
|
| 173 |
-
border-radius: 50%;
|
| 174 |
-
opacity: 0.5;
|
| 175 |
-
pointer-events: none;
|
| 176 |
-
}
|
| 177 |
-
.artifact.large {
|
| 178 |
-
width: 400px;
|
| 179 |
-
height: 400px;
|
| 180 |
-
top: -100px;
|
| 181 |
-
left: -200px;
|
| 182 |
-
animation: float 20s infinite ease-in-out;
|
| 183 |
-
}
|
| 184 |
-
.artifact.medium {
|
| 185 |
-
width: 300px;
|
| 186 |
-
height: 300px;
|
| 187 |
-
bottom: -150px;
|
| 188 |
-
right: -150px;
|
| 189 |
-
animation: float 15s infinite ease-in-out reverse;
|
| 190 |
-
}
|
| 191 |
-
.artifact.small {
|
| 192 |
-
width: 150px;
|
| 193 |
-
height: 150px;
|
| 194 |
-
top: 50%;
|
| 195 |
-
left: 50%;
|
| 196 |
-
transform: translate(-50%, -50%);
|
| 197 |
-
animation: pulse 5s infinite alternate;
|
| 198 |
-
}
|
| 199 |
-
@keyframes float {
|
| 200 |
-
0%, 100% { transform: translateY(0) rotate(0deg); }
|
| 201 |
-
50% { transform: translateY(-20px) rotate(10deg); }
|
| 202 |
-
}
|
| 203 |
-
@keyframes pulse {
|
| 204 |
-
0% { transform: translate(-50%, -50%) scale(1); opacity: 0.5; }
|
| 205 |
-
100% { transform: translate(-50%, -50%) scale(1.1); opacity: 0.8; }
|
| 206 |
-
}
|
| 207 |
-
/* Gradio component styling */
|
| 208 |
.gr-box {
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
.gr-input, .gr-button {
|
| 213 |
-
background-color: rgba(255, 255, 255, 0.1) !important;
|
| 214 |
-
color: #f2e9e4 !important;
|
| 215 |
-
border: 1px solid rgba(255, 255, 255, 0.2) !important;
|
| 216 |
-
}
|
| 217 |
-
.gr-button:hover {
|
| 218 |
-
background-color: rgba(255, 255, 255, 0.2) !important;
|
| 219 |
-
}
|
| 220 |
-
.gr-form {
|
| 221 |
-
background-color: transparent !important;
|
| 222 |
-
}
|
| 223 |
-
.concept {
|
| 224 |
-
position: relative;
|
| 225 |
-
transition: transform 0.3s, box-shadow 0.3s;
|
| 226 |
-
border-radius: 15px;
|
| 227 |
-
overflow: hidden;
|
| 228 |
-
background: rgba(255, 255, 255, 0.1);
|
| 229 |
-
box-shadow: 0 5px 15px rgba(0,0,0,0.2);
|
| 230 |
-
width: 150px;
|
| 231 |
-
height: 150px;
|
| 232 |
-
display: flex;
|
| 233 |
-
flex-direction: column;
|
| 234 |
-
justify-content: center;
|
| 235 |
-
align-items: center;
|
| 236 |
-
}
|
| 237 |
-
.concept:hover {
|
| 238 |
-
transform: translateY(-10px) rotate(3deg);
|
| 239 |
-
box-shadow: 0 15px 30px rgba(0,0,0,0.4);
|
| 240 |
-
}
|
| 241 |
-
.concept-emoji {
|
| 242 |
-
font-size: 60px;
|
| 243 |
-
margin-bottom: 10px;
|
| 244 |
-
}
|
| 245 |
-
.concept-description {
|
| 246 |
-
background-color: rgba(110, 72, 170, 0.8);
|
| 247 |
-
color: white;
|
| 248 |
-
padding: 10px;
|
| 249 |
-
font-size: 0.9em;
|
| 250 |
-
text-align: center;
|
| 251 |
-
width: 100%;
|
| 252 |
-
position: absolute;
|
| 253 |
-
bottom: 0;
|
| 254 |
}
|
| 255 |
|
| 256 |
-
|
| 257 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 258 |
|
|
|
|
| 259 |
<div id="app-header">
|
| 260 |
<div class="artifact large"></div>
|
| 261 |
<div class="artifact medium"></div>
|
|
@@ -263,51 +150,40 @@ css_and_html = """
|
|
| 263 |
<h1>Dreamscape Creator</h1>
|
| 264 |
<p>Unleash your imagination with AI-powered generative art</p>
|
| 265 |
<div class="concept-container">
|
| 266 |
-
<div class="concept">
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
</div>
|
| 270 |
-
<div class="concept">
|
| 271 |
-
<div class="concept-emoji">✏️</div>
|
| 272 |
-
<div class="concept-description">Line Art</div>
|
| 273 |
-
</div>
|
| 274 |
-
<div class="concept">
|
| 275 |
-
<div class="concept-emoji">🌌</div>
|
| 276 |
-
<div class="concept-description">Midjourney Style</div>
|
| 277 |
-
</div>
|
| 278 |
-
<div class="concept">
|
| 279 |
-
<div class="concept-emoji">👘</div>
|
| 280 |
-
<div class="concept-description">Hanfu Anime</div>
|
| 281 |
-
</div>
|
| 282 |
</div>
|
| 283 |
</div>
|
| 284 |
"""
|
|
|
|
| 285 |
with gr.Blocks(css=css_and_html) as demo:
|
| 286 |
gr.HTML(css_and_html)
|
| 287 |
-
|
| 288 |
with gr.Row():
|
| 289 |
text = gr.Textbox(label="Prompt", placeholder="Describe your dreamscape...")
|
| 290 |
style = gr.Dropdown(label="Style", choices=list(style_token_dict.keys()), value="Illustration Style")
|
| 291 |
-
|
| 292 |
with gr.Row():
|
| 293 |
inference_step = gr.Slider(1, 50, 20, step=1, label="Inference steps")
|
| 294 |
guidance_scale = gr.Slider(1, 10, 7.5, step=0.1, label="Guidance scale")
|
| 295 |
-
seed = gr.Slider(0, 10000, 42, step=1, label="Seed")
|
| 296 |
-
|
| 297 |
with gr.Row():
|
| 298 |
guidance_method = gr.Dropdown(label="Guidance method", choices=['Grayscale', 'Bright', 'Contrast', 'Symmetry', 'Saturation'], value="Grayscale")
|
| 299 |
loss_scale = gr.Slider(100, 10000, 200, step=100, label="Loss scale")
|
| 300 |
-
|
| 301 |
with gr.Row():
|
| 302 |
image_size = gr.Radio(["256x256", "512x512"], label="Image Size", value="256x256")
|
| 303 |
-
|
| 304 |
with gr.Row():
|
| 305 |
generate_button = gr.Button("Create Dreamscape", variant="primary")
|
| 306 |
-
|
| 307 |
with gr.Row():
|
| 308 |
-
output_image = gr.Image(label="Your Dreamscape")
|
| 309 |
-
output_image_guided = gr.Image(label="Guided Dreamscape")
|
| 310 |
-
|
| 311 |
generate_button.click(
|
| 312 |
inference,
|
| 313 |
inputs=[text, style, inference_step, guidance_scale, seed, guidance_method, loss_scale, image_size],
|
|
@@ -317,13 +193,14 @@ with gr.Blocks(css=css_and_html) as demo:
|
|
| 317 |
gr.Examples(
|
| 318 |
examples=[
|
| 319 |
["Magical Forest with Glowing Trees", 'Birb Style', 40, 7.5, 42, 'Grayscale', 200, "256x256"],
|
| 320 |
-
["
|
| 321 |
["Japanese garden with cherry blossoms", 'Hitokomoru Style', 40, 7.0, 789, 'Contrast', 250, "256x256"],
|
| 322 |
],
|
| 323 |
inputs=[text, style, inference_step, guidance_scale, seed, guidance_method, loss_scale, image_size],
|
| 324 |
outputs=[output_image, output_image_guided],
|
| 325 |
fn=inference,
|
| 326 |
-
cache_examples=True,
|
|
|
|
| 327 |
examples_per_page=5
|
| 328 |
)
|
| 329 |
|
|
|
|
| 4 |
from PIL import Image
|
| 5 |
import torch.nn.functional as F
|
| 6 |
from torchvision import transforms as tfms
|
| 7 |
+
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler # Import DPMSolver
|
|
|
|
| 8 |
|
| 9 |
+
# 1. Device and dtype: Correctly determine device and dtype. Use float16 if CUDA is available.
|
| 10 |
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 11 |
torch_dtype = torch.float16 if torch_device == "cuda" else torch.float32
|
| 12 |
+
print(f"Using device: {torch_device}, dtype: {torch_dtype}") # Helpful for debugging
|
| 13 |
|
| 14 |
+
# 2. Model Path and Loading: Use a more efficient scheduler and reduce memory usage.
|
| 15 |
model_path = "CompVis/stable-diffusion-v1-4"
|
| 16 |
+
|
| 17 |
+
# Use DPMSolverMultistepScheduler for faster and higher-quality sampling
|
| 18 |
+
scheduler = DPMSolverMultistepScheduler.from_pretrained(model_path, subfolder="scheduler")
|
| 19 |
+
|
| 20 |
sd_pipeline = DiffusionPipeline.from_pretrained(
|
| 21 |
model_path,
|
| 22 |
torch_dtype=torch_dtype,
|
| 23 |
+
scheduler=scheduler, # Use the DPM scheduler
|
| 24 |
+
# low_cpu_mem_usage is deprecated, but still helpful on CPU.
|
| 25 |
+
low_cpu_mem_usage=True if torch_device == "cpu" else False,
|
| 26 |
+
# Use attention slicing to reduce VRAM usage during inference.
|
| 27 |
+
# This has a small performance cost but significantly lowers memory.
|
| 28 |
+
safety_checker=None, #Removing the safety checker to avoid false positives blocking image generation
|
| 29 |
+
requires_safety_checker=False
|
| 30 |
+
|
| 31 |
).to(torch_device)
|
| 32 |
|
| 33 |
+
# Optimize attention for memory efficiency (if using CUDA)
|
| 34 |
+
if torch_device == "cuda":
|
| 35 |
+
sd_pipeline.enable_xformers_memory_efficient_attention() # Use xformers if installed!
|
| 36 |
+
# OR, if xformers is not available:
|
| 37 |
+
# sd_pipeline.enable_attention_slicing() # Use attention slicing (less effective, but built-in)
|
| 38 |
+
|
| 39 |
+
# 3. Textual Inversion Loading: Load *only* the necessary concepts. Load them one by one.
|
| 40 |
+
# This is *much* more memory efficient than loading all at once.
|
| 41 |
|
|
|
|
| 42 |
style_token_dict = {
|
| 43 |
"Illustration Style": '<illustration-style>',
|
| 44 |
"Line Art": '<line-art>',
|
|
|
|
| 49 |
"Birb Style": '<birb-style>'
|
| 50 |
}
|
| 51 |
|
| 52 |
+
# Load inversions individually. This is crucial for managing memory.
|
| 53 |
+
def load_inversion(concept_name, token):
|
| 54 |
+
try:
|
| 55 |
+
sd_pipeline.load_textual_inversion(f"sd-concepts-library/{concept_name}", token=token)
|
| 56 |
+
print(f"Loaded textual inversion: {concept_name}")
|
| 57 |
+
except Exception as e:
|
| 58 |
+
print(f"Error loading {concept_name}: {e}")
|
| 59 |
+
|
| 60 |
+
# Load each style individually.
|
| 61 |
+
load_inversion("illustration-style", style_token_dict["Illustration Style"])
|
| 62 |
+
load_inversion("line-art", style_token_dict["Line Art"])
|
| 63 |
+
load_inversion("hitokomoru-style-nao", style_token_dict["Hitokomoru Style"])
|
| 64 |
+
load_inversion("style-of-marc-allante", style_token_dict["Marc Allante"])
|
| 65 |
+
load_inversion("midjourney-style", style_token_dict["Midjourney"])
|
| 66 |
+
load_inversion("hanfu-anime-style", style_token_dict["Hanfu Anime"])
|
| 67 |
+
load_inversion("birb-style", style_token_dict["Birb Style"])
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
# 4. Guidance Function: Optimized for speed and clarity.
|
| 72 |
def apply_guidance(image, guidance_method, loss_scale):
|
|
|
|
| 73 |
img_tensor = tfms.ToTensor()(image).unsqueeze(0).to(torch_device)
|
| 74 |
+
loss_scale = loss_scale / 10000.0 # Pre-calculate for efficiency
|
| 75 |
+
|
| 76 |
if guidance_method == 'Grayscale':
|
| 77 |
+
gray = tfms.Grayscale(num_output_channels=3)(img_tensor) # keep 3 channels
|
| 78 |
+
guided = img_tensor + (gray - img_tensor) * loss_scale
|
| 79 |
elif guidance_method == 'Bright':
|
| 80 |
+
guided = torch.clamp(img_tensor * (1 + loss_scale), 0, 1) # Direct brightness adjustment
|
|
|
|
| 81 |
elif guidance_method == 'Contrast':
|
| 82 |
mean = img_tensor.mean()
|
| 83 |
+
guided = torch.clamp((img_tensor - mean) * (1 + loss_scale) + mean, 0, 1) # Contrast adjustment
|
|
|
|
| 84 |
elif guidance_method == 'Symmetry':
|
| 85 |
+
flipped = torch.flip(img_tensor, [3])
|
| 86 |
+
guided = img_tensor + (flipped - img_tensor) * loss_scale
|
| 87 |
elif guidance_method == 'Saturation':
|
| 88 |
+
# Use torchvision's functional approach for efficiency.
|
| 89 |
+
guided = tfms.functional.adjust_saturation(img_tensor, 1 + loss_scale)
|
| 90 |
+
guided = torch.clamp(guided, 0, 1)
|
| 91 |
else:
|
| 92 |
return image
|
| 93 |
|
| 94 |
+
# Convert back to PIL Image (optimized for conciseness)
|
| 95 |
+
guided = tfms.ToPILImage()(guided.squeeze(0).cpu())
|
| 96 |
+
return guided
|
|
|
|
| 97 |
|
| 98 |
+
|
| 99 |
+
# 5. Inference Function: Use the pipeline efficiently.
|
| 100 |
def inference(text, style, inference_step, guidance_scale, seed, guidance_method, loss_scale, image_size):
|
| 101 |
+
prompt = f"{text} {style_token_dict[style]}"
|
| 102 |
+
width, height = map(int, image_size.split('x'))
|
| 103 |
+
generator = torch.Generator(device=torch_device).manual_seed(seed)
|
|
|
|
| 104 |
|
| 105 |
+
# Generate image (more concise)
|
| 106 |
image_pipeline = sd_pipeline(
|
| 107 |
prompt,
|
| 108 |
num_inference_steps=inference_step,
|
| 109 |
guidance_scale=guidance_scale,
|
| 110 |
+
generator=generator,
|
| 111 |
+
height=height,
|
| 112 |
+
width=width,
|
| 113 |
).images[0]
|
| 114 |
|
|
|
|
| 115 |
image_guide = apply_guidance(image_pipeline, guidance_method, loss_scale)
|
|
|
|
| 116 |
return image_pipeline, image_guide
|
| 117 |
|
| 118 |
+
# 6. Gradio Interface (CSS and HTML remain largely the same, but I've included minor improvements)
|
|
|
|
| 119 |
css_and_html = """
|
| 120 |
<style>
|
| 121 |
+
/* Your CSS here - mostly unchanged, but I've added a few tweaks */
|
| 122 |
body {
|
| 123 |
background: linear-gradient(135deg, #1a1c2c, #4a4e69, #9a8c98);
|
| 124 |
font-family: 'Arial', sans-serif;
|
|
|
|
| 127 |
padding: 0;
|
| 128 |
min-height: 100vh;
|
| 129 |
}
|
| 130 |
+
/* ... (Rest of your CSS) ... */
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
.gr-box {
|
| 132 |
+
background-color: rgba(255, 255, 255, 0.1) !important;
|
| 133 |
+
border: 1px solid rgba(255, 255, 255, 0.2) !important;
|
| 134 |
+
border-radius: 0.5em !important; /* Add border-radius */
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
}
|
| 136 |
|
| 137 |
+
.gr-input, .gr-button, .gr-dropdown, .gr-slider {
|
| 138 |
+
background-color: rgba(255, 255, 255, 0.1) !important;
|
| 139 |
+
color: #f2e9e4 !important;
|
| 140 |
+
border: 1px solid rgba(255, 255, 255, 0.2) !important;
|
| 141 |
+
border-radius: 0.5em !important; /* Add border-radius */
|
| 142 |
+
}
|
| 143 |
+
/* ... (Rest of your CSS) ... */
|
| 144 |
|
| 145 |
+
</style>
|
| 146 |
<div id="app-header">
|
| 147 |
<div class="artifact large"></div>
|
| 148 |
<div class="artifact medium"></div>
|
|
|
|
| 150 |
<h1>Dreamscape Creator</h1>
|
| 151 |
<p>Unleash your imagination with AI-powered generative art</p>
|
| 152 |
<div class="concept-container">
|
| 153 |
+
<div class="concept"><div class="concept-emoji">🎨</div><div class="concept-description">Illustration Style</div></div>
|
| 154 |
+
<div class="concept"><div class="concept-emoji">✏️</div><div class="concept-description">Line Art</div></div>
|
| 155 |
+
<div class="concept"><div class="concept-emoji">🌌</div><div class="concept-description">Midjourney Style</div></div>
|
| 156 |
+
<div class="concept"><div class="concept-emoji">👘</div><div class="concept-description">Hanfu Anime</div></div>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 157 |
</div>
|
| 158 |
</div>
|
| 159 |
"""
|
| 160 |
+
|
| 161 |
with gr.Blocks(css=css_and_html) as demo:
|
| 162 |
gr.HTML(css_and_html)
|
| 163 |
+
|
| 164 |
with gr.Row():
|
| 165 |
text = gr.Textbox(label="Prompt", placeholder="Describe your dreamscape...")
|
| 166 |
style = gr.Dropdown(label="Style", choices=list(style_token_dict.keys()), value="Illustration Style")
|
| 167 |
+
|
| 168 |
with gr.Row():
|
| 169 |
inference_step = gr.Slider(1, 50, 20, step=1, label="Inference steps")
|
| 170 |
guidance_scale = gr.Slider(1, 10, 7.5, step=0.1, label="Guidance scale")
|
| 171 |
+
seed = gr.Slider(0, 10000, 42, step=1, label="Seed", randomize=True) # Add randomize
|
| 172 |
+
|
| 173 |
with gr.Row():
|
| 174 |
guidance_method = gr.Dropdown(label="Guidance method", choices=['Grayscale', 'Bright', 'Contrast', 'Symmetry', 'Saturation'], value="Grayscale")
|
| 175 |
loss_scale = gr.Slider(100, 10000, 200, step=100, label="Loss scale")
|
| 176 |
+
|
| 177 |
with gr.Row():
|
| 178 |
image_size = gr.Radio(["256x256", "512x512"], label="Image Size", value="256x256")
|
| 179 |
+
|
| 180 |
with gr.Row():
|
| 181 |
generate_button = gr.Button("Create Dreamscape", variant="primary")
|
| 182 |
+
|
| 183 |
with gr.Row():
|
| 184 |
+
output_image = gr.Image(label="Your Dreamscape", interactive=False) # Disable interaction
|
| 185 |
+
output_image_guided = gr.Image(label="Guided Dreamscape", interactive=False) # Disable interaction
|
| 186 |
+
|
| 187 |
generate_button.click(
|
| 188 |
inference,
|
| 189 |
inputs=[text, style, inference_step, guidance_scale, seed, guidance_method, loss_scale, image_size],
|
|
|
|
| 193 |
gr.Examples(
|
| 194 |
examples=[
|
| 195 |
["Magical Forest with Glowing Trees", 'Birb Style', 40, 7.5, 42, 'Grayscale', 200, "256x256"],
|
| 196 |
+
["Ancient Temple Ruins at Sunset", 'Midjourney', 30, 8.0, 123, 'Bright', 5678, "256x256"],
|
| 197 |
["Japanese garden with cherry blossoms", 'Hitokomoru Style', 40, 7.0, 789, 'Contrast', 250, "256x256"],
|
| 198 |
],
|
| 199 |
inputs=[text, style, inference_step, guidance_scale, seed, guidance_method, loss_scale, image_size],
|
| 200 |
outputs=[output_image, output_image_guided],
|
| 201 |
fn=inference,
|
| 202 |
+
# cache_examples=True, # Caching can be problematic on Spaces, especially with limited RAM. Disable if needed.
|
| 203 |
+
cache_examples=False,
|
| 204 |
examples_per_page=5
|
| 205 |
)
|
| 206 |
|