Update app.py
Browse files
app.py
CHANGED
|
@@ -4,59 +4,6 @@ from PIL import Image
|
|
| 4 |
import os
|
| 5 |
import yolov9
|
| 6 |
|
| 7 |
-
import gradio as gr
|
| 8 |
-
import torch
|
| 9 |
-
from PIL import Image
|
| 10 |
-
import os
|
| 11 |
-
import yolov9
|
| 12 |
-
|
| 13 |
-
def yolov9_inference(img_path, image_size, conf_threshold, iou_threshold):
|
| 14 |
-
model = yolov9.load('./best.pt')
|
| 15 |
-
model.conf = conf_threshold
|
| 16 |
-
model.iou = iou_threshold
|
| 17 |
-
results = model(img_path, size=image_size)
|
| 18 |
-
output = results.render()
|
| 19 |
-
return output[0]
|
| 20 |
-
|
| 21 |
-
def app():
|
| 22 |
-
with gr.Blocks() as demo:
|
| 23 |
-
gr.HTML(HTML_TEMPLATE)
|
| 24 |
-
|
| 25 |
-
with gr.Row():
|
| 26 |
-
with gr.Column(scale=1, min_width=300):
|
| 27 |
-
img_path = gr.Image(type="filepath", label="Upload Image")
|
| 28 |
-
image_size = gr.Slider(label="Image Size", minimum=320, maximum=1280, step=32, value=640)
|
| 29 |
-
conf_threshold = gr.Slider(label="Confidence Threshold", minimum=0.1, maximum=1.0, step=0.1, value=0.4)
|
| 30 |
-
iou_threshold = gr.Slider(label="IoU Threshold", minimum=0.1, maximum=1.0, step=0.1, value=0.5)
|
| 31 |
-
detect_button = gr.Button("Detect Manholes", variant="primary")
|
| 32 |
-
|
| 33 |
-
with gr.Column(scale=1, min_width=300):
|
| 34 |
-
output_numpy = gr.Image(type="numpy", label="Detection Result")
|
| 35 |
-
|
| 36 |
-
detect_button.click(
|
| 37 |
-
fn=yolov9_inference,
|
| 38 |
-
inputs=[img_path, image_size, conf_threshold, iou_threshold],
|
| 39 |
-
outputs=[output_numpy]
|
| 40 |
-
)
|
| 41 |
-
|
| 42 |
-
gr.Examples(
|
| 43 |
-
examples=[
|
| 44 |
-
["./openmanhole.jpg", 640, 0.4, 0.5],
|
| 45 |
-
["./images.jpeg", 640, 0.4, 0.5],
|
| 46 |
-
],
|
| 47 |
-
fn=yolov9_inference,
|
| 48 |
-
inputs=[img_path, image_size, conf_threshold, iou_threshold],
|
| 49 |
-
outputs=[output_numpy],
|
| 50 |
-
cache_examples=True,
|
| 51 |
-
)
|
| 52 |
-
|
| 53 |
-
return demo
|
| 54 |
-
import gradio as gr
|
| 55 |
-
import torch
|
| 56 |
-
from PIL import Image
|
| 57 |
-
import os
|
| 58 |
-
import yolov9
|
| 59 |
-
|
| 60 |
HTML_TEMPLATE = """
|
| 61 |
<style>
|
| 62 |
body {
|
|
@@ -193,16 +140,46 @@ HTML_TEMPLATE = """
|
|
| 193 |
</div>
|
| 194 |
"""
|
| 195 |
|
| 196 |
-
# Your existing yolov9_inference function here
|
| 197 |
def yolov9_inference(img_path, image_size, conf_threshold, iou_threshold):
|
| 198 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 199 |
|
| 200 |
def app():
|
| 201 |
with gr.Blocks() as demo:
|
| 202 |
gr.HTML(HTML_TEMPLATE)
|
| 203 |
|
| 204 |
-
|
| 205 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 206 |
return demo
|
| 207 |
|
| 208 |
css = """
|
|
|
|
| 4 |
import os
|
| 5 |
import yolov9
|
| 6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
HTML_TEMPLATE = """
|
| 8 |
<style>
|
| 9 |
body {
|
|
|
|
| 140 |
</div>
|
| 141 |
"""
|
| 142 |
|
|
|
|
| 143 |
def yolov9_inference(img_path, image_size, conf_threshold, iou_threshold):
|
| 144 |
+
model = yolov9.load('./best.pt')
|
| 145 |
+
model.conf = conf_threshold
|
| 146 |
+
model.iou = iou_threshold
|
| 147 |
+
results = model(img_path, size=image_size)
|
| 148 |
+
output = results.render()
|
| 149 |
+
return output[0]
|
| 150 |
|
| 151 |
def app():
|
| 152 |
with gr.Blocks() as demo:
|
| 153 |
gr.HTML(HTML_TEMPLATE)
|
| 154 |
|
| 155 |
+
with gr.Row():
|
| 156 |
+
with gr.Column(scale=1, min_width=300):
|
| 157 |
+
img_path = gr.Image(type="filepath", label="Upload Image")
|
| 158 |
+
image_size = gr.Slider(label="Image Size", minimum=320, maximum=1280, step=32, value=640)
|
| 159 |
+
conf_threshold = gr.Slider(label="Confidence Threshold", minimum=0.1, maximum=1.0, step=0.1, value=0.4)
|
| 160 |
+
iou_threshold = gr.Slider(label="IoU Threshold", minimum=0.1, maximum=1.0, step=0.1, value=0.5)
|
| 161 |
+
detect_button = gr.Button("Detect Manholes", variant="primary")
|
| 162 |
+
|
| 163 |
+
with gr.Column(scale=1, min_width=300):
|
| 164 |
+
output_numpy = gr.Image(type="numpy", label="Detection Result")
|
| 165 |
+
|
| 166 |
+
detect_button.click(
|
| 167 |
+
fn=yolov9_inference,
|
| 168 |
+
inputs=[img_path, image_size, conf_threshold, iou_threshold],
|
| 169 |
+
outputs=[output_numpy]
|
| 170 |
+
)
|
| 171 |
+
|
| 172 |
+
gr.Examples(
|
| 173 |
+
examples=[
|
| 174 |
+
["./openmanhole.jpg", 640, 0.4, 0.5],
|
| 175 |
+
["./images.jpeg", 640, 0.4, 0.5],
|
| 176 |
+
],
|
| 177 |
+
fn=yolov9_inference,
|
| 178 |
+
inputs=[img_path, image_size, conf_threshold, iou_threshold],
|
| 179 |
+
outputs=[output_numpy],
|
| 180 |
+
cache_examples=True,
|
| 181 |
+
)
|
| 182 |
+
|
| 183 |
return demo
|
| 184 |
|
| 185 |
css = """
|