Spaces:
Runtime error
Runtime error
Commit
·
3663ccd
1
Parent(s):
c450ce3
added openai api key pw field
Browse files
app.py
CHANGED
|
@@ -1,6 +1,5 @@
|
|
| 1 |
import time
|
| 2 |
import streamlit as st
|
| 3 |
-
from dotenv import load_dotenv
|
| 4 |
from PyPDF2 import PdfReader
|
| 5 |
from langchain.text_splitter import CharacterTextSplitter
|
| 6 |
from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings
|
|
@@ -11,7 +10,7 @@ from langchain.chains import ConversationalRetrievalChain
|
|
| 11 |
import os
|
| 12 |
import pickle
|
| 13 |
from datetime import datetime
|
| 14 |
-
from backend.generate_metadata import
|
| 15 |
|
| 16 |
|
| 17 |
css = '''
|
|
@@ -43,7 +42,8 @@ css = '''
|
|
| 43 |
bot_template = '''
|
| 44 |
<div class="chat-message bot">
|
| 45 |
<div class="avatar">
|
| 46 |
-
<img src="https://i.ibb.co/cN0nmSj/Screenshot-2023-05-28-at-02-37-21.png"
|
|
|
|
| 47 |
</div>
|
| 48 |
<div class="message">{{MSG}}</div>
|
| 49 |
</div>
|
|
@@ -67,7 +67,6 @@ def get_pdf_text(pdf_docs):
|
|
| 67 |
return text
|
| 68 |
|
| 69 |
|
| 70 |
-
|
| 71 |
def get_text_chunks(text):
|
| 72 |
text_splitter = CharacterTextSplitter(
|
| 73 |
separator="\n",
|
|
@@ -132,12 +131,20 @@ def safe_vec_store():
|
|
| 132 |
|
| 133 |
|
| 134 |
def main():
|
| 135 |
-
load_dotenv()
|
| 136 |
st.set_page_config(page_title="Doc Verify RAG", page_icon=":hospital:")
|
| 137 |
st.write(css, unsafe_allow_html=True)
|
| 138 |
-
if
|
|
|
|
|
|
|
|
|
|
|
|
|
| 139 |
st.session_state.classify = False
|
|
|
|
|
|
|
| 140 |
st.subheader("Your documents")
|
|
|
|
|
|
|
|
|
|
| 141 |
if st.session_state.classify:
|
| 142 |
pdf_doc = st.file_uploader("Upload your PDFs here and click on 'Process'", accept_multiple_files=False)
|
| 143 |
else:
|
|
@@ -149,7 +156,7 @@ def main():
|
|
| 149 |
# THE CLASSIFICATION APP
|
| 150 |
st.write("Classifying")
|
| 151 |
plain_text_doc = ingest(pdf_doc.name)
|
| 152 |
-
classification_result =
|
| 153 |
st.write(classification_result)
|
| 154 |
else:
|
| 155 |
# NORMAL RAG
|
|
|
|
| 1 |
import time
|
| 2 |
import streamlit as st
|
|
|
|
| 3 |
from PyPDF2 import PdfReader
|
| 4 |
from langchain.text_splitter import CharacterTextSplitter
|
| 5 |
from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings
|
|
|
|
| 10 |
import os
|
| 11 |
import pickle
|
| 12 |
from datetime import datetime
|
| 13 |
+
from backend.generate_metadata import generate_metadata, ingest
|
| 14 |
|
| 15 |
|
| 16 |
css = '''
|
|
|
|
| 42 |
bot_template = '''
|
| 43 |
<div class="chat-message bot">
|
| 44 |
<div class="avatar">
|
| 45 |
+
<img src="https://i.ibb.co/cN0nmSj/Screenshot-2023-05-28-at-02-37-21.png"
|
| 46 |
+
style="max-height: 78px; max-width: 78px; border-radius: 50%; object-fit: cover;">
|
| 47 |
</div>
|
| 48 |
<div class="message">{{MSG}}</div>
|
| 49 |
</div>
|
|
|
|
| 67 |
return text
|
| 68 |
|
| 69 |
|
|
|
|
| 70 |
def get_text_chunks(text):
|
| 71 |
text_splitter = CharacterTextSplitter(
|
| 72 |
separator="\n",
|
|
|
|
| 131 |
|
| 132 |
|
| 133 |
def main():
|
|
|
|
| 134 |
st.set_page_config(page_title="Doc Verify RAG", page_icon=":hospital:")
|
| 135 |
st.write(css, unsafe_allow_html=True)
|
| 136 |
+
if "openai_api_key" not in st.session_state:
|
| 137 |
+
st.session_state.openai_api_key = False
|
| 138 |
+
if "openai_org" not in st.session_state:
|
| 139 |
+
st.session_state.openai_org = False
|
| 140 |
+
if "classify" not in st.session_state:
|
| 141 |
st.session_state.classify = False
|
| 142 |
+
def set_pw():
|
| 143 |
+
st.session_state.openai_api_key = True
|
| 144 |
st.subheader("Your documents")
|
| 145 |
+
# OPENAI_ORG_ID = st.text_input("OPENAI ORG ID:")
|
| 146 |
+
OPENAI_API_KEY = st.text_input("OPENAI API KEY:", type="password",
|
| 147 |
+
disabled=st.session_state.openai_api_key, on_change=set_pw)
|
| 148 |
if st.session_state.classify:
|
| 149 |
pdf_doc = st.file_uploader("Upload your PDFs here and click on 'Process'", accept_multiple_files=False)
|
| 150 |
else:
|
|
|
|
| 156 |
# THE CLASSIFICATION APP
|
| 157 |
st.write("Classifying")
|
| 158 |
plain_text_doc = ingest(pdf_doc.name)
|
| 159 |
+
classification_result = generate_metadata(plain_text_doc)
|
| 160 |
st.write(classification_result)
|
| 161 |
else:
|
| 162 |
# NORMAL RAG
|