Spaces:
Runtime error
Runtime error
Commit
·
7d56215
1
Parent(s):
a232b2b
added mock functionality
Browse files
app.py
CHANGED
|
@@ -1,17 +1,17 @@
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
from dotenv import load_dotenv
|
| 3 |
from PyPDF2 import PdfReader
|
| 4 |
-
from langchain import embeddings
|
| 5 |
from langchain.text_splitter import CharacterTextSplitter
|
| 6 |
from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings
|
| 7 |
from langchain.vectorstores import FAISS
|
| 8 |
-
from langchain.vectorstores import faiss
|
| 9 |
from langchain.chat_models import ChatOpenAI
|
| 10 |
from langchain.memory import ConversationBufferMemory
|
| 11 |
from langchain.chains import ConversationalRetrievalChain
|
| 12 |
import os
|
| 13 |
import pickle
|
| 14 |
from datetime import datetime
|
|
|
|
| 15 |
|
| 16 |
|
| 17 |
css = '''
|
|
@@ -111,12 +111,16 @@ def handle_userinput(user_question):
|
|
| 111 |
print(message)
|
| 112 |
# Display AI response
|
| 113 |
st.write(bot_template.replace("{{MSG}}", message.content), unsafe_allow_html=True)
|
|
|
|
|
|
|
| 114 |
# Display source document information if available in the message
|
| 115 |
if hasattr(message, 'source') and message.source:
|
| 116 |
st.write(f"Source Document: {message.source}", unsafe_allow_html=True)
|
| 117 |
|
| 118 |
|
|
|
|
| 119 |
def safe_vec_store():
|
|
|
|
| 120 |
os.makedirs('vectorstore', exist_ok=True)
|
| 121 |
filename = 'vectores' + datetime.now().strftime('%Y%m%d%H%M') + '.pkl'
|
| 122 |
file_path = os.path.join('vectorstore', filename)
|
|
@@ -127,18 +131,22 @@ def safe_vec_store():
|
|
| 127 |
pickle.dump(vector_store, f)
|
| 128 |
|
| 129 |
|
| 130 |
-
|
| 131 |
def main():
|
| 132 |
load_dotenv()
|
| 133 |
st.set_page_config(page_title="Doc Verify RAG", page_icon=":hospital:")
|
| 134 |
st.write(css, unsafe_allow_html=True)
|
| 135 |
-
|
| 136 |
st.subheader("Your documents")
|
| 137 |
-
pdf_docs = st.file_uploader("Upload your PDFs here and click on 'Process'", accept_multiple_files=
|
| 138 |
filenames = [file.name for file in pdf_docs if file is not None]
|
| 139 |
|
| 140 |
if st.button("Process"):
|
| 141 |
with st.spinner("Processing"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
loaded_vec_store = None
|
| 143 |
for filename in filenames:
|
| 144 |
if ".pkl" in filename:
|
|
@@ -156,7 +164,12 @@ def main():
|
|
| 156 |
st.warning("merged to existing")
|
| 157 |
st.session_state.vectorstore = vec
|
| 158 |
st.session_state.conversation = get_conversation_chain(vec)
|
| 159 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 160 |
|
| 161 |
if "conversation" not in st.session_state:
|
| 162 |
st.session_state.conversation = None
|
|
@@ -176,31 +189,16 @@ def main():
|
|
| 176 |
|
| 177 |
if st.button("Process Classification"):
|
| 178 |
with st.spinner("Processing"):
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
file_path = os.path.join('vectorstore', filename)
|
| 183 |
-
with open(file_path, 'rb') as f:
|
| 184 |
-
loaded_vec_store = pickle.load(f)
|
| 185 |
-
raw_text = get_pdf_text(pdf_docs)
|
| 186 |
-
text_chunks = get_text_chunks(raw_text)
|
| 187 |
-
vec = get_vectorstore(text_chunks)
|
| 188 |
-
if loaded_vec_store:
|
| 189 |
-
vec.merge_from(loaded_vec_store)
|
| 190 |
-
st.warning("loaded vectorstore")
|
| 191 |
-
if "vectorstore" in st.session_state:
|
| 192 |
-
vec.merge_from(st.session_state.vectorstore)
|
| 193 |
-
st.warning("merged to existing")
|
| 194 |
-
st.session_state.vectorstore = vec
|
| 195 |
-
st.session_state.conversation = get_conversation_chain(vec)
|
| 196 |
-
st.success("data loaded")
|
| 197 |
|
| 198 |
# Save and Load Embeddings
|
| 199 |
if st.button("Save Embeddings"):
|
| 200 |
if "vectorstore" in st.session_state:
|
| 201 |
safe_vec_store()
|
| 202 |
# st.session_state.vectorstore.save_local("faiss_index")
|
| 203 |
-
st.sidebar.success("
|
| 204 |
else:
|
| 205 |
st.sidebar.warning("No embeddings to save. Please process documents first.")
|
| 206 |
|
|
|
|
| 1 |
+
import time
|
| 2 |
import streamlit as st
|
| 3 |
from dotenv import load_dotenv
|
| 4 |
from PyPDF2 import PdfReader
|
|
|
|
| 5 |
from langchain.text_splitter import CharacterTextSplitter
|
| 6 |
from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings
|
| 7 |
from langchain.vectorstores import FAISS
|
|
|
|
| 8 |
from langchain.chat_models import ChatOpenAI
|
| 9 |
from langchain.memory import ConversationBufferMemory
|
| 10 |
from langchain.chains import ConversationalRetrievalChain
|
| 11 |
import os
|
| 12 |
import pickle
|
| 13 |
from datetime import datetime
|
| 14 |
+
from backend.generate_metadata import extract_metadata, ingest
|
| 15 |
|
| 16 |
|
| 17 |
css = '''
|
|
|
|
| 111 |
print(message)
|
| 112 |
# Display AI response
|
| 113 |
st.write(bot_template.replace("{{MSG}}", message.content), unsafe_allow_html=True)
|
| 114 |
+
|
| 115 |
+
# THIS DOESNT WORK, SOMEONE PLS FIX
|
| 116 |
# Display source document information if available in the message
|
| 117 |
if hasattr(message, 'source') and message.source:
|
| 118 |
st.write(f"Source Document: {message.source}", unsafe_allow_html=True)
|
| 119 |
|
| 120 |
|
| 121 |
+
|
| 122 |
def safe_vec_store():
|
| 123 |
+
# USE VECTARA INSTEAD
|
| 124 |
os.makedirs('vectorstore', exist_ok=True)
|
| 125 |
filename = 'vectores' + datetime.now().strftime('%Y%m%d%H%M') + '.pkl'
|
| 126 |
file_path = os.path.join('vectorstore', filename)
|
|
|
|
| 131 |
pickle.dump(vector_store, f)
|
| 132 |
|
| 133 |
|
|
|
|
| 134 |
def main():
|
| 135 |
load_dotenv()
|
| 136 |
st.set_page_config(page_title="Doc Verify RAG", page_icon=":hospital:")
|
| 137 |
st.write(css, unsafe_allow_html=True)
|
| 138 |
+
st.session_state.classify = False
|
| 139 |
st.subheader("Your documents")
|
| 140 |
+
pdf_docs = st.file_uploader("Upload your PDFs here and click on 'Process'", accept_multiple_files=not st.session_state.classify)
|
| 141 |
filenames = [file.name for file in pdf_docs if file is not None]
|
| 142 |
|
| 143 |
if st.button("Process"):
|
| 144 |
with st.spinner("Processing"):
|
| 145 |
+
if st.session_state.classify:
|
| 146 |
+
# THE CLASSIFICATION APP
|
| 147 |
+
plain_text_doc = ingest(pdf_docs)
|
| 148 |
+
|
| 149 |
+
# NORMAL RAG
|
| 150 |
loaded_vec_store = None
|
| 151 |
for filename in filenames:
|
| 152 |
if ".pkl" in filename:
|
|
|
|
| 164 |
st.warning("merged to existing")
|
| 165 |
st.session_state.vectorstore = vec
|
| 166 |
st.session_state.conversation = get_conversation_chain(vec)
|
| 167 |
+
st.success("data loaded")
|
| 168 |
+
if st.session_state.classify:
|
| 169 |
+
# THE CLASSIFICATION APP
|
| 170 |
+
classification_result = extract_metadata(plain_text_doc)
|
| 171 |
+
st.write(classification_result)
|
| 172 |
+
|
| 173 |
|
| 174 |
if "conversation" not in st.session_state:
|
| 175 |
st.session_state.conversation = None
|
|
|
|
| 189 |
|
| 190 |
if st.button("Process Classification"):
|
| 191 |
with st.spinner("Processing"):
|
| 192 |
+
st.session_state.classify = True
|
| 193 |
+
time.sleep(3)
|
| 194 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 195 |
|
| 196 |
# Save and Load Embeddings
|
| 197 |
if st.button("Save Embeddings"):
|
| 198 |
if "vectorstore" in st.session_state:
|
| 199 |
safe_vec_store()
|
| 200 |
# st.session_state.vectorstore.save_local("faiss_index")
|
| 201 |
+
st.sidebar.success("saved")
|
| 202 |
else:
|
| 203 |
st.sidebar.warning("No embeddings to save. Please process documents first.")
|
| 204 |
|