File size: 8,737 Bytes
3da4f0d
 
 
 
 
 
d03ac84
3da4f0d
f10b987
d03ac84
3da4f0d
 
f10b987
3da4f0d
 
 
 
 
 
ca8cbba
f10b987
3da4f0d
 
f10b987
3da4f0d
d03ac84
3da4f0d
f10b987
3da4f0d
f10b987
 
 
 
3da4f0d
d03ac84
 
 
f10b987
 
ca8cbba
f10b987
ca8cbba
f10b987
3da4f0d
f10b987
 
d03ac84
f10b987
d03ac84
f10b987
d03ac84
f10b987
d03ac84
f10b987
 
d03ac84
3da4f0d
f10b987
3da4f0d
f10b987
d03ac84
3da4f0d
 
f10b987
3da4f0d
 
 
 
 
d03ac84
3da4f0d
 
 
f10b987
 
d03ac84
3da4f0d
 
 
 
 
 
 
f10b987
3da4f0d
94fd0fd
3da4f0d
 
f10b987
d03ac84
f10b987
d03ac84
f10b987
 
 
d03ac84
 
 
 
 
f10b987
d03ac84
 
 
3da4f0d
 
f10b987
 
3da4f0d
 
f10b987
 
3da4f0d
f10b987
 
 
 
 
 
 
 
3da4f0d
 
 
 
d03ac84
f10b987
3da4f0d
 
 
 
f10b987
3da4f0d
 
 
f10b987
 
 
3da4f0d
d03ac84
 
f10b987
 
 
d03ac84
3da4f0d
f10b987
3da4f0d
d03ac84
f10b987
 
3da4f0d
f10b987
d03ac84
f10b987
 
d03ac84
 
 
 
f10b987
d03ac84
 
 
 
 
 
f10b987
d03ac84
 
 
 
 
 
f10b987
3da4f0d
 
c2f8f51
 
 
 
 
3da4f0d
d03ac84
 
 
f10b987
3da4f0d
 
f10b987
3da4f0d
f10b987
d03ac84
 
f10b987
 
d03ac84
3da4f0d
f10b987
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import gradio as gr
import torch
from transformers import AutoModel, AutoTokenizer
import spaces
import os
import tempfile
from PIL import Image

# --- 1. Load Model and Tokenizer (Done only once at startup) ---
print("Loading model and tokenizer...")
model_name = "deepseek-ai/DeepSeek-OCR"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
# Load the model to CPU first; it will be moved to GPU during processing
model = AutoModel.from_pretrained(
    model_name,
    _attn_implementation="flash_attention_2",
    trust_remote_code=True,
    use_safetensors=True,
)
model = model.eval()
print("βœ… Model loaded successfully.")


# --- 2. Main Processing Function ---
@spaces.GPU
def process_ocr_task(image, model_size, task_type, ref_text):
    """
    Processes an image with DeepSeek-OCR for all supported tasks.
    Args:
        image (PIL.Image): The input image.
        model_size (str): The model size configuration.
        task_type (str): The type of OCR task to perform.
        ref_text (str): The reference text for the 'Locate' task.
    """
    if image is None:
        return "Please upload an image first.", None

    # Move the model to GPU and use bfloat16 for better performance
    print("πŸš€ Moving model to GPU...")
    model_gpu = model.cuda().to(torch.bfloat16)
    print("βœ… Model is on GPU.")

    # Create a temporary directory to store files
    with tempfile.TemporaryDirectory() as output_path:
        # --- Build the prompt based on the selected task type ---
        if task_type == "πŸ“ Free OCR":
            prompt = "<image>\nFree OCR."
        elif task_type == "πŸ“„ Convert to Markdown":
            prompt = "<image>\n<|grounding|>Convert the document to markdown."
        elif task_type == "πŸ“ˆ Parse Figure":
            prompt = "<image>\nParse the figure."
        elif task_type == "πŸ” Locate Object by Reference":
            if not ref_text or ref_text.strip() == "":
                raise gr.Error("For the 'Locate' task, you must provide the reference text to find!")
            # Use an f-string to embed the user's reference text into the prompt
            prompt = f"<image>\nLocate <|ref|>{ref_text.strip()}<|/ref|> in the image."
        else:
            prompt = "<image>\nFree OCR." # Default fallback

        # Save the uploaded image to the temporary path
        temp_image_path = os.path.join(output_path, "temp_image.png")
        image.save(temp_image_path)

        # Configure model size parameters
        size_configs = {
            "Tiny": {"base_size": 512, "image_size": 512, "crop_mode": False},
            "Small": {"base_size": 640, "image_size": 640, "crop_mode": False},
            "Base": {"base_size": 1024, "image_size": 1024, "crop_mode": False},
            "Large": {"base_size": 1280, "image_size": 1280, "crop_mode": False},
            "Gundam (Recommended)": {"base_size": 1024, "image_size": 640, "crop_mode": True},
        }
        config = size_configs.get(model_size, size_configs["Gundam (Recommended)"])

        print(f"πŸƒ Running inference with prompt: {prompt}")
        # --- Run the model's inference method ---
        text_result = model_gpu.infer(
            tokenizer,
            prompt=prompt,
            image_file=temp_image_path,
            output_path=output_path,
            base_size=config["base_size"],
            image_size=config["image_size"],
            crop_mode=config["crop_mode"],
            save_results=True,  # Important: Must be True to get the output image
            test_compress=True,
            eval_mode=True,
        )

        print(f"====\nπŸ“„ Text Result: {text_result}\n====")

        # --- Handle the output (both text and image) ---
        image_result_path = None
        # Tasks that generate a visual output usually create a 'grounding' or 'result' image
        if task_type in ["πŸ” Locate Object by Reference", "πŸ“„ Convert to Markdown", "πŸ“ˆ Parse Figure"]:
            # Find the result image in the output directory
            for filename in os.listdir(output_path):
                if "grounding" in filename or "result" in filename:
                    image_result_path = os.path.join(output_path, filename)
                    break
        
        # If an image was found, open it with PIL; otherwise, return None
        result_image_pil = Image.open(image_result_path) if image_result_path else None
        
        return text_result, result_image_pil


# --- 3. Build the Gradio Interface ---
with gr.Blocks(title="🐳DeepSeek-OCR🐳", theme=gr.themes.Soft()) as demo:
    gr.Markdown(
        """
        # 🐳 Full Demo of DeepSeek-OCR 🐳
        Upload an image to explore the document recognition and understanding capabilities of DeepSeek-OCR.
        
        **πŸ’‘ How to use:**
        1.  **Upload an image** using the upload box.
        2.  Select a **Model Size**. `Gundam` is recommended for most documents for a good balance of speed and accuracy.
        3.  Choose a **Task Type**:
            - **πŸ“ Free OCR**: Extracts raw text from the image. Best for simple text extraction.
            - **πŸ“„ Convert to Markdown**: Converts the entire document into Markdown format, preserving structure like headers, lists, and tables.
            - **πŸ“ˆ Parse Figure**: Analyzes and extracts structured data from charts, graphs, and geometric figures.
            - **πŸ” Locate Object by Reference**: Finds a specific object or piece of text in the image. You **must** type what you're looking for into the **"Reference Text"** box that appears.
        """
    )

    with gr.Row():
        with gr.Column(scale=1):
            image_input = gr.Image(type="pil", label="πŸ–ΌοΈ Upload Image", sources=["upload", "clipboard"])

            model_size = gr.Dropdown(
                choices=["Tiny", "Small", "Base", "Large", "Gundam (Recommended)"],
                value="Gundam (Recommended)",
                label="βš™οΈ Model Size",
            )

            task_type = gr.Dropdown(
                choices=["πŸ“ Free OCR", "πŸ“„ Convert to Markdown", "πŸ“ˆ Parse Figure", "πŸ” Locate Object by Reference"],
                value="πŸ“„ Convert to Markdown",
                label="πŸš€ Task Type",
            )
            
            ref_text_input = gr.Textbox(
                label="πŸ“ Reference Text (for Locate task)",
                placeholder="e.g., the teacher, 11-2=, a red car...",
                visible=False, # Initially hidden
            )

            submit_btn = gr.Button("Process Image", variant="primary")

        with gr.Column(scale=2):
            output_text = gr.Textbox(label="πŸ“„ Text Result", lines=15, show_copy_button=True)
            output_image = gr.Image(label="πŸ–ΌοΈ Image Result (if any)", type="pil")

    # --- UI Interaction Logic ---
    def toggle_ref_text_visibility(task):
        # If the user selects the 'Locate' task, make the reference textbox visible
        if task == "πŸ” Locate Object by Reference":
            return gr.Textbox(visible=True)
        else:
            return gr.Textbox(visible=False)

    # When the 'task_type' dropdown changes, call the function to update the visibility
    task_type.change(
        fn=toggle_ref_text_visibility,
        inputs=task_type,
        outputs=ref_text_input,
    )
    
    # Define what happens when the submit button is clicked
    submit_btn.click(
        fn=process_ocr_task,
        inputs=[image_input, model_size, task_type, ref_text_input],
        outputs=[output_text, output_image],
    )

    # --- Example Images and Tasks ---
    gr.Examples(
        examples=[
            ["doc_markdown.png", "Gundam (Recommended)", "πŸ“„ Convert to Markdown", ""],
            ["chart.png", "Gundam (Recommended)", "πŸ“ˆ Parse Figure", ""],
            ["teacher.jpg", "Base", "πŸ” Locate Object by Reference", "the teacher"],
            ["math_locate.jpg", "Small", "πŸ” Locate Object by Reference", "20-10"],
            ["receipt.jpg", "Base", "πŸ“ Free OCR", ""],
        ],
        inputs=[image_input, model_size, task_type, ref_text_input],
        outputs=[output_text, output_image],
        fn=process_ocr_task,
        cache_examples=False, # Disable caching to ensure examples run every time
    )

# --- 4. Launch the App ---
if __name__ == "__main__":
    # Create an 'examples' directory if it doesn't exist
    if not os.path.exists("examples"):
        os.makedirs("examples")
    # Please manually download the example images into the "examples" folder.
    # e.g., doc_markdown.png, chart.png, teacher.png, math_locate.png, receipt.jpg
    
    demo.queue(max_size=20)
    demo.launch(share=True) # Set share=True to create a public link