File size: 8,743 Bytes
3da4f0d
 
 
 
 
 
3b28ff1
 
3da4f0d
f10b987
d03ac84
3da4f0d
 
f10b987
3da4f0d
 
 
 
 
 
ca8cbba
f10b987
3da4f0d
3b28ff1
 
 
 
 
 
 
 
 
 
3da4f0d
2fd9f05
3da4f0d
d03ac84
3da4f0d
f10b987
2fd9f05
3da4f0d
d03ac84
 
 
f10b987
ca8cbba
f10b987
ca8cbba
3da4f0d
3b28ff1
f10b987
d03ac84
f10b987
d03ac84
f10b987
d03ac84
f10b987
d03ac84
f10b987
d03ac84
3da4f0d
3b28ff1
3da4f0d
d03ac84
3da4f0d
 
3b28ff1
3da4f0d
 
 
 
 
d03ac84
3da4f0d
 
 
f10b987
d03ac84
3da4f0d
 
 
 
 
 
 
3b28ff1
3da4f0d
94fd0fd
3da4f0d
 
f10b987
d03ac84
2fd9f05
3b28ff1
d03ac84
2fd9f05
 
 
3b28ff1
2fd9f05
 
 
 
 
 
 
 
 
3b28ff1
 
 
 
 
 
 
 
 
 
 
 
2fd9f05
 
3b28ff1
2fd9f05
 
3b28ff1
 
d03ac84
3da4f0d
 
2fd9f05
f10b987
3da4f0d
 
f10b987
8c99c2e
f10b987
 
5ab0da1
f10b987
2fd9f05
 
 
 
20b35e8
3da4f0d
 
 
 
d03ac84
f10b987
5ab0da1
2fd9f05
 
f10b987
3da4f0d
d03ac84
f10b987
 
3da4f0d
f10b987
d03ac84
2fd9f05
d03ac84
2fd9f05
 
d03ac84
2fd9f05
3da4f0d
 
c2f8f51
 
 
 
 
3da4f0d
d03ac84
 
 
f10b987
3da4f0d
 
f10b987
3da4f0d
d03ac84
 
2fd9f05
 
d03ac84
2fd9f05
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import gradio as gr
import torch
from transformers import AutoModel, AutoTokenizer
import spaces
import os
import tempfile
from PIL import Image, ImageDraw
import re # Import thΖ° viện regular expression

# --- 1. Load Model and Tokenizer (Done only once at startup) ---
print("Loading model and tokenizer...")
model_name = "deepseek-ai/DeepSeek-OCR"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
# Load the model to CPU first; it will be moved to GPU during processing
model = AutoModel.from_pretrained(
    model_name,
    _attn_implementation="flash_attention_2",
    trust_remote_code=True,
    use_safetensors=True,
)
model = model.eval()
print("βœ… Model loaded successfully.")

# --- Helper function to find pre-generated result images ---
def find_result_image(path):
    for filename in os.listdir(path):
        if "grounding" in filename or "result" in filename:
            try:
                image_path = os.path.join(path, filename)
                return Image.open(image_path)
            except Exception as e:
                print(f"Error opening result image {filename}: {e}")
    return None

# --- 2. Main Processing Function (UPDATED for multi-bbox drawing) ---
@spaces.GPU
def process_ocr_task(image, model_size, task_type, ref_text):
    """
    Processes an image with DeepSeek-OCR for all supported tasks.
    Now draws ALL detected bounding boxes for ANY task.
    """
    if image is None:
        return "Please upload an image first.", None

    print("πŸš€ Moving model to GPU...")
    model_gpu = model.cuda().to(torch.bfloat16)
    print("βœ… Model is on GPU.")

    with tempfile.TemporaryDirectory() as output_path:
        # Build the prompt... (same as before)
        if task_type == "πŸ“ Free OCR":
            prompt = "<image>\nFree OCR."
        elif task_type == "πŸ“„ Convert to Markdown":
            prompt = "<image>\n<|grounding|>Convert the document to markdown."
        elif task_type == "πŸ“ˆ Parse Figure":
            prompt = "<image>\nParse the figure."
        elif task_type == "πŸ” Locate Object by Reference":
            if not ref_text or ref_text.strip() == "":
                raise gr.Error("For the 'Locate' task, you must provide the reference text to find!")
            prompt = f"<image>\nLocate <|ref|>{ref_text.strip()}<|/ref|> in the image."
        else:
            prompt = "<image>\nFree OCR."

        temp_image_path = os.path.join(output_path, "temp_image.png")
        image.save(temp_image_path)

        # Configure model size... (same as before)
        size_configs = {
            "Tiny": {"base_size": 512, "image_size": 512, "crop_mode": False},
            "Small": {"base_size": 640, "image_size": 640, "crop_mode": False},
            "Base": {"base_size": 1024, "image_size": 1024, "crop_mode": False},
            "Large": {"base_size": 1280, "image_size": 1280, "crop_mode": False},
            "Gundam (Recommended)": {"base_size": 1024, "image_size": 640, "crop_mode": True},
        }
        config = size_configs.get(model_size, size_configs["Gundam (Recommended)"])

        print(f"πŸƒ Running inference with prompt: {prompt}")
        text_result = model_gpu.infer(
            tokenizer,
            prompt=prompt,
            image_file=temp_image_path,
            output_path=output_path,
            base_size=config["base_size"],
            image_size=config["image_size"],
            crop_mode=config["crop_mode"],
            save_results=True,
            test_compress=True,
            eval_mode=True,
        )

        print(f"====\nπŸ“„ Text Result: {text_result}\n====")

        # --- NEW LOGIC: Always try to find and draw all bounding boxes ---
        result_image_pil = None
        
        # Define the pattern to find all coordinates like [[280, 15, 696, 997]]
        pattern = re.compile(r"<\|det\|>\[\[(\d+),\s*(\d+),\s*(\d+),\s*(\d+)\]\]<\|/det\|>")
        matches = list(pattern.finditer(text_result)) # Use finditer to get all matches

        if matches:
            print(f"βœ… Found {len(matches)} bounding box(es). Drawing on the original image.")
            
            # Create a copy of the original image to draw on
            image_with_bboxes = image.copy()
            draw = ImageDraw.Draw(image_with_bboxes)
            w, h = image.size # Get original image dimensions

            for match in matches:
                # Extract coordinates as integers
                coords_norm = [int(c) for c in match.groups()]
                x1_norm, y1_norm, x2_norm, y2_norm = coords_norm
                
                # Scale the normalized coordinates (from 1000x1000 space) to the image's actual size
                x1 = int(x1_norm / 1000 * w)
                y1 = int(y1_norm / 1000 * h)
                x2 = int(x2_norm / 1000 * w)
                y2 = int(y2_norm / 1000 * h)
                
                # Draw the rectangle with a red outline, 3 pixels wide
                draw.rectangle([x1, y1, x2, y2], outline="red", width=3)
            
            result_image_pil = image_with_bboxes
        else:
            # If no coordinates are found in the text, fall back to finding a pre-generated image
            print("⚠️ No bounding box coordinates found in text result. Falling back to search for a result image file.")
            result_image_pil = find_result_image(output_path)
            
        return text_result, result_image_pil


# --- 3. Build the Gradio Interface (UPDATED) ---
with gr.Blocks(title="🐳DeepSeek-OCR🐳", theme=gr.themes.Soft()) as demo:
    gr.Markdown(
        """
        # 🐳 Full Demo of DeepSeek-OCR 🐳

        **πŸ’‘ How to use:**
        1.  **Upload an image** using the upload box.
        2.  Select a **Resolution**. `Gundam` is recommended for most documents.
        3.  Choose a **Task Type**:
            - **πŸ“ Free OCR**: Extracts raw text from the image.
            - **πŸ“„ Convert to Markdown**: Converts the document into Markdown, preserving structure.
            - **πŸ“ˆ Parse Figure**: Extracts structured data from charts and figures.
            - **πŸ” Locate Object by Reference**: Finds a specific object/text.
        4. If this helpful, please give it a like! πŸ™ ❀️
        """
    )

    with gr.Row():
        with gr.Column(scale=1):
            image_input = gr.Image(type="pil", label="πŸ–ΌοΈ Upload Image", sources=["upload", "clipboard"])
            model_size = gr.Dropdown(choices=["Tiny", "Small", "Base", "Large", "Gundam (Recommended)"], value="Gundam (Recommended)", label="βš™οΈ Resolution Size")
            task_type = gr.Dropdown(choices=["πŸ“ Free OCR", "πŸ“„ Convert to Markdown", "πŸ“ˆ Parse Figure", "πŸ” Locate Object by Reference"], value="πŸ“„ Convert to Markdown", label="πŸš€ Task Type")
            ref_text_input = gr.Textbox(label="πŸ“ Reference Text (for Locate task)", placeholder="e.g., the teacher, 20-10, a red car...", visible=False)
            submit_btn = gr.Button("Process Image", variant="primary")

        with gr.Column(scale=2):
            output_text = gr.Textbox(label="πŸ“„ Text Result", lines=15, show_copy_button=True)
            output_image = gr.Image(label="πŸ–ΌοΈ Image Result (if any)", type="pil")

    # --- UI Interaction Logic ---
    def toggle_ref_text_visibility(task):
        return gr.Textbox(visible=True) if task == "πŸ” Locate Object by Reference" else gr.Textbox(visible=False)

    task_type.change(fn=toggle_ref_text_visibility, inputs=task_type, outputs=ref_text_input)
    submit_btn.click(fn=process_ocr_task, inputs=[image_input, model_size, task_type, ref_text_input], outputs=[output_text, output_image])

    # --- UPDATED Example Images and Tasks ---
    gr.Examples(
        examples=[
            ["doc_markdown.png", "Gundam (Recommended)", "πŸ“„ Convert to Markdown", ""],
            ["chart.png", "Gundam (Recommended)", "πŸ“ˆ Parse Figure", ""],
            ["teacher.jpg", "Base", "πŸ” Locate Object by Reference", "the teacher"],
            ["math_locate.jpg", "Small", "πŸ” Locate Object by Reference", "20-10"],
            ["receipt.jpg", "Base", "πŸ“ Free OCR", ""],
        ],
        inputs=[image_input, model_size, task_type, ref_text_input],
        outputs=[output_text, output_image],
        fn=process_ocr_task,
        cache_examples=False, # Disable caching to ensure examples run every time
    )

# --- 4. Launch the App ---
if __name__ == "__main__":
    if not os.path.exists("examples"):
        os.makedirs("examples")
    # Make sure to have the correct image files in your "examples" folder
    # e.g., doc_markdown.png, chart.png, teacher.jpg, math_locate.jpg, receipt.jpg
    
    demo.queue(max_size=20).launch(share=True)