Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -12,13 +12,12 @@ from langchain.chains import RetrievalQA
|
|
| 12 |
from langchain.prompts import PromptTemplate
|
| 13 |
import faiss
|
| 14 |
import uuid
|
| 15 |
-
from dotenv import load_dotenv
|
| 16 |
|
| 17 |
-
|
| 18 |
-
HUGGINGFACEHUB_API_TOKEN =
|
| 19 |
-
RAG_ACCESS_KEY =
|
| 20 |
|
| 21 |
-
#
|
| 22 |
if "vectorstore" not in st.session_state:
|
| 23 |
st.session_state.vectorstore = None
|
| 24 |
if "history" not in st.session_state:
|
|
@@ -26,7 +25,7 @@ if "history" not in st.session_state:
|
|
| 26 |
if "authenticated" not in st.session_state:
|
| 27 |
st.session_state.authenticated = False
|
| 28 |
|
| 29 |
-
# Sidebar with
|
| 30 |
with st.sidebar:
|
| 31 |
try:
|
| 32 |
st.image("bsnl_logo.png", width=200)
|
|
@@ -36,6 +35,7 @@ with st.sidebar:
|
|
| 36 |
st.header("RAG Control Panel")
|
| 37 |
api_key_input = st.text_input("Enter RAG Access Key", type="password")
|
| 38 |
|
|
|
|
| 39 |
st.markdown("""
|
| 40 |
<style>
|
| 41 |
.auth-button button {
|
|
@@ -81,7 +81,7 @@ with st.sidebar:
|
|
| 81 |
st.write(f"**A{i+1}:** {a}")
|
| 82 |
st.markdown("---")
|
| 83 |
|
| 84 |
-
# Main
|
| 85 |
def main():
|
| 86 |
st.markdown("""
|
| 87 |
<style>
|
|
@@ -114,10 +114,10 @@ def main():
|
|
| 114 |
except Exception as e:
|
| 115 |
st.error(f"Error generating answer: {str(e)}")
|
| 116 |
|
| 117 |
-
#
|
| 118 |
def process_input(input_data):
|
| 119 |
os.makedirs("vectorstore", exist_ok=True)
|
| 120 |
-
os.chmod("vectorstore",
|
| 121 |
|
| 122 |
progress_bar = st.progress(0)
|
| 123 |
status = st.status("Processing PDF file...", expanded=True)
|
|
@@ -161,20 +161,20 @@ def process_input(input_data):
|
|
| 161 |
progress_bar.progress(1.0)
|
| 162 |
return vector_store
|
| 163 |
|
| 164 |
-
#
|
| 165 |
def answer_question(vectorstore, query):
|
| 166 |
try:
|
| 167 |
llm = HuggingFaceHub(
|
| 168 |
repo_id="mistralai/Mistral-7B-Instruct-v0.1",
|
| 169 |
-
model_kwargs={"temperature": 0.7, "
|
| 170 |
huggingfacehub_api_token=HUGGINGFACEHUB_API_TOKEN
|
| 171 |
)
|
| 172 |
except Exception as e:
|
| 173 |
-
raise RuntimeError("Failed to load LLM.
|
| 174 |
|
| 175 |
retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
|
| 176 |
prompt_template = PromptTemplate(
|
| 177 |
-
template="Use the context
|
| 178 |
input_variables=["context", "question"]
|
| 179 |
)
|
| 180 |
|
|
@@ -189,5 +189,6 @@ def answer_question(vectorstore, query):
|
|
| 189 |
result = qa_chain({"query": query})
|
| 190 |
return result["result"].split("Answer:")[-1].strip()
|
| 191 |
|
|
|
|
| 192 |
if __name__ == "__main__":
|
| 193 |
main()
|
|
|
|
| 12 |
from langchain.prompts import PromptTemplate
|
| 13 |
import faiss
|
| 14 |
import uuid
|
|
|
|
| 15 |
|
| 16 |
+
# Load secrets from Streamlit
|
| 17 |
+
HUGGINGFACEHUB_API_TOKEN = st.secrets["HUGGINGFACEHUB_API_TOKEN"]
|
| 18 |
+
RAG_ACCESS_KEY = st.secrets["RAG_ACCESS_KEY"]
|
| 19 |
|
| 20 |
+
# Initialize session state
|
| 21 |
if "vectorstore" not in st.session_state:
|
| 22 |
st.session_state.vectorstore = None
|
| 23 |
if "history" not in st.session_state:
|
|
|
|
| 25 |
if "authenticated" not in st.session_state:
|
| 26 |
st.session_state.authenticated = False
|
| 27 |
|
| 28 |
+
# Sidebar with logo and authentication
|
| 29 |
with st.sidebar:
|
| 30 |
try:
|
| 31 |
st.image("bsnl_logo.png", width=200)
|
|
|
|
| 35 |
st.header("RAG Control Panel")
|
| 36 |
api_key_input = st.text_input("Enter RAG Access Key", type="password")
|
| 37 |
|
| 38 |
+
# Custom styled Authenticate button
|
| 39 |
st.markdown("""
|
| 40 |
<style>
|
| 41 |
.auth-button button {
|
|
|
|
| 81 |
st.write(f"**A{i+1}:** {a}")
|
| 82 |
st.markdown("---")
|
| 83 |
|
| 84 |
+
# Main app interface
|
| 85 |
def main():
|
| 86 |
st.markdown("""
|
| 87 |
<style>
|
|
|
|
| 114 |
except Exception as e:
|
| 115 |
st.error(f"Error generating answer: {str(e)}")
|
| 116 |
|
| 117 |
+
# Process PDF and build vector store
|
| 118 |
def process_input(input_data):
|
| 119 |
os.makedirs("vectorstore", exist_ok=True)
|
| 120 |
+
os.chmod("vectorstore", 0o777)
|
| 121 |
|
| 122 |
progress_bar = st.progress(0)
|
| 123 |
status = st.status("Processing PDF file...", expanded=True)
|
|
|
|
| 161 |
progress_bar.progress(1.0)
|
| 162 |
return vector_store
|
| 163 |
|
| 164 |
+
# Answer the user's query
|
| 165 |
def answer_question(vectorstore, query):
|
| 166 |
try:
|
| 167 |
llm = HuggingFaceHub(
|
| 168 |
repo_id="mistralai/Mistral-7B-Instruct-v0.1",
|
| 169 |
+
model_kwargs={"temperature": 0.7, "max_length": 512},
|
| 170 |
huggingfacehub_api_token=HUGGINGFACEHUB_API_TOKEN
|
| 171 |
)
|
| 172 |
except Exception as e:
|
| 173 |
+
raise RuntimeError("Failed to load LLM. Check Hugging Face API key and access rights.") from e
|
| 174 |
|
| 175 |
retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
|
| 176 |
prompt_template = PromptTemplate(
|
| 177 |
+
template="Use the context to answer the question concisely:\n\nContext: {context}\n\nQuestion: {question}\n\nAnswer:",
|
| 178 |
input_variables=["context", "question"]
|
| 179 |
)
|
| 180 |
|
|
|
|
| 189 |
result = qa_chain({"query": query})
|
| 190 |
return result["result"].split("Answer:")[-1].strip()
|
| 191 |
|
| 192 |
+
# Run the app
|
| 193 |
if __name__ == "__main__":
|
| 194 |
main()
|