Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -31,6 +31,85 @@ if "history" not in st.session_state:
|
|
| 31 |
if "authenticated" not in st.session_state:
|
| 32 |
st.session_state.authenticated = False
|
| 33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
# Sidebar with BSNL logo and authentication
|
| 35 |
with st.sidebar:
|
| 36 |
try:
|
|
@@ -152,84 +231,5 @@ def main():
|
|
| 152 |
except Exception as e:
|
| 153 |
st.error(f"Error generating answer: {str(e)}")
|
| 154 |
|
| 155 |
-
# PDF processing logic
|
| 156 |
-
def process_input(input_data):
|
| 157 |
-
# Initialize progress bar and status
|
| 158 |
-
progress_bar = st.progress(0)
|
| 159 |
-
status = st.empty()
|
| 160 |
-
|
| 161 |
-
# Step 1: Read PDF file in memory
|
| 162 |
-
status.text("Reading PDF file...")
|
| 163 |
-
progress_bar.progress(0.25)
|
| 164 |
-
|
| 165 |
-
pdf_reader = PdfReader(BytesIO(input_data.read()))
|
| 166 |
-
documents = "".join([page.extract_text() or "" for page in pdf_reader.pages])
|
| 167 |
-
|
| 168 |
-
# Step 2: Split text
|
| 169 |
-
status.text("Splitting text into chunks...")
|
| 170 |
-
progress_bar.progress(0.50)
|
| 171 |
-
|
| 172 |
-
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
|
| 173 |
-
texts = text_splitter.split_text(documents)
|
| 174 |
-
|
| 175 |
-
# Step 3: Create embeddings
|
| 176 |
-
status.text("Creating embeddings...")
|
| 177 |
-
progress_bar.progress(0.75)
|
| 178 |
-
|
| 179 |
-
hf_embeddings = HuggingFaceEmbeddings(
|
| 180 |
-
model_name="sentence-transformers/all-mpnet-base-v2",
|
| 181 |
-
model_kwargs={'device': 'cpu'}
|
| 182 |
-
)
|
| 183 |
-
|
| 184 |
-
# Step 4: Initialize FAISS vector store
|
| 185 |
-
status.text("Building vector store...")
|
| 186 |
-
progress_bar.progress(1.0)
|
| 187 |
-
|
| 188 |
-
dimension = len(hf_embeddings.embed_query("test"))
|
| 189 |
-
index = faiss.IndexFlatL2(dimension)
|
| 190 |
-
vector_store = FAISS(
|
| 191 |
-
embedding_function=hf_embeddings,
|
| 192 |
-
index=index,
|
| 193 |
-
docstore=InMemoryDocstore({}),
|
| 194 |
-
index_to_docstore_id={}
|
| 195 |
-
)
|
| 196 |
-
|
| 197 |
-
# Add texts to vector store
|
| 198 |
-
uuids = [str(uuid.uuid4()) for _ in texts]
|
| 199 |
-
vector_store.add_texts(texts, ids=uuids)
|
| 200 |
-
|
| 201 |
-
# Complete processing
|
| 202 |
-
status.text("Processing complete!")
|
| 203 |
-
|
| 204 |
-
return vector_store
|
| 205 |
-
|
| 206 |
-
# Question-answering logic
|
| 207 |
-
def answer_question(vectorstore, query):
|
| 208 |
-
if not HUGGINGFACEHUB_API_TOKEN:
|
| 209 |
-
raise RuntimeError("Missing Hugging Face API token. Please set it in your secrets.")
|
| 210 |
-
|
| 211 |
-
llm = HuggingFaceHub(
|
| 212 |
-
repo_id="mistralai/Mistral-7B-Instruct-v0.1",
|
| 213 |
-
model_kwargs={"temperature": 0.7, "max_length": 512},
|
| 214 |
-
huggingfacehub_api_token=HUGGINGFACEHUB_API_TOKEN
|
| 215 |
-
)
|
| 216 |
-
|
| 217 |
-
retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
|
| 218 |
-
prompt_template = PromptTemplate(
|
| 219 |
-
template="Use the context to answer the question concisely:\n\nContext: {context}\n\nQuestion: {question}\n\nAnswer:",
|
| 220 |
-
input_variables=["context", "question"]
|
| 221 |
-
)
|
| 222 |
-
|
| 223 |
-
qa_chain = RetrievalQA.from_chain_type(
|
| 224 |
-
llm=llm,
|
| 225 |
-
chain_type="stuff",
|
| 226 |
-
retriever=retriever,
|
| 227 |
-
return_source_documents=False,
|
| 228 |
-
chain_type_kwargs={"prompt": prompt_template}
|
| 229 |
-
)
|
| 230 |
-
|
| 231 |
-
result = qa_chain({"query": query})
|
| 232 |
-
return result["result"].split("Answer:")[-1].strip()
|
| 233 |
-
|
| 234 |
if __name__ == "__main__":
|
| 235 |
main()
|
|
|
|
| 31 |
if "authenticated" not in st.session_state:
|
| 32 |
st.session_state.authenticated = False
|
| 33 |
|
| 34 |
+
# PDF processing logic
|
| 35 |
+
def process_input(input_data):
|
| 36 |
+
# Initialize progress bar and status
|
| 37 |
+
progress_bar = st.progress(0)
|
| 38 |
+
status = st.empty()
|
| 39 |
+
|
| 40 |
+
# Step 1: Read PDF file in memory
|
| 41 |
+
status.text("Reading PDF file...")
|
| 42 |
+
progress_bar.progress(0.25)
|
| 43 |
+
|
| 44 |
+
pdf_reader = PdfReader(BytesIO(input_data.read()))
|
| 45 |
+
documents = "".join([page.extract_text() or "" for page in pdf_reader.pages])
|
| 46 |
+
|
| 47 |
+
# Step 2: Split text
|
| 48 |
+
status.text("Splitting text into chunks...")
|
| 49 |
+
progress_bar.progress(0.50)
|
| 50 |
+
|
| 51 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
|
| 52 |
+
texts = text_splitter.split_text(documents)
|
| 53 |
+
|
| 54 |
+
# Step 3: Create embeddings
|
| 55 |
+
status.text("Creating embeddings...")
|
| 56 |
+
progress_bar.progress(0.75)
|
| 57 |
+
|
| 58 |
+
hf_embeddings = HuggingFaceEmbeddings(
|
| 59 |
+
model_name="sentence-transformers/all-mpnet-base-v2",
|
| 60 |
+
model_kwargs={'device': 'cpu'}
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
# Step 4: Initialize FAISS vector store
|
| 64 |
+
status.text("Building vector store...")
|
| 65 |
+
progress_bar.progress(1.0)
|
| 66 |
+
|
| 67 |
+
dimension = len(hf_embeddings.embed_query("test"))
|
| 68 |
+
index = faiss.IndexFlatL2(dimension)
|
| 69 |
+
vector_store = FAISS(
|
| 70 |
+
embedding_function=hf_embeddings,
|
| 71 |
+
index=index,
|
| 72 |
+
docstore=InMemoryDocstore({}),
|
| 73 |
+
index_to_docstore_id={}
|
| 74 |
+
)
|
| 75 |
+
|
| 76 |
+
# Add texts to vector store
|
| 77 |
+
uuids = [str(uuid.uuid4()) for _ in texts]
|
| 78 |
+
vector_store.add_texts(texts, ids=uuids)
|
| 79 |
+
|
| 80 |
+
# Complete processing
|
| 81 |
+
status.text("Processing complete!")
|
| 82 |
+
|
| 83 |
+
return vector_store
|
| 84 |
+
|
| 85 |
+
# Question-answering logic
|
| 86 |
+
def answer_question(vectorstore, query):
|
| 87 |
+
if not HUGGINGFACEHUB_API_TOKEN:
|
| 88 |
+
raise RuntimeError("Missing Hugging Face API token. Please set it in your secrets.")
|
| 89 |
+
|
| 90 |
+
llm = HuggingFaceHub(
|
| 91 |
+
repo_id="mistralai/Mistral-7B-Instruct-v0.1",
|
| 92 |
+
model_kwargs={"temperature": 0.7, "max_length": 512},
|
| 93 |
+
huggingfacehub_api_token=HUGGINGFACEHUB_API_TOKEN
|
| 94 |
+
)
|
| 95 |
+
|
| 96 |
+
retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
|
| 97 |
+
prompt_template = PromptTemplate(
|
| 98 |
+
template="Use the context to answer the question concisely:\n\nContext: {context}\n\nQuestion: {question}\n\nAnswer:",
|
| 99 |
+
input_variables=["context", "question"]
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
qa_chain = RetrievalQA.from_chain_type(
|
| 103 |
+
llm=llm,
|
| 104 |
+
chain_type="stuff",
|
| 105 |
+
retriever=retriever,
|
| 106 |
+
return_source_documents=False,
|
| 107 |
+
chain_type_kwargs={"prompt": prompt_template}
|
| 108 |
+
)
|
| 109 |
+
|
| 110 |
+
result = qa_chain({"query": query})
|
| 111 |
+
return result["result"].split("Answer:")[-1].strip()
|
| 112 |
+
|
| 113 |
# Sidebar with BSNL logo and authentication
|
| 114 |
with st.sidebar:
|
| 115 |
try:
|
|
|
|
| 231 |
except Exception as e:
|
| 232 |
st.error(f"Error generating answer: {str(e)}")
|
| 233 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 234 |
if __name__ == "__main__":
|
| 235 |
main()
|