Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import os
|
| 3 |
+
import zipfile
|
| 4 |
+
import shutil
|
| 5 |
+
from io import BytesIO
|
| 6 |
+
from PyPDF2 import PdfReader
|
| 7 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 8 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 9 |
+
from langchain_community.vectorstores import FAISS
|
| 10 |
+
from langchain_community.docstore.in_memory import InMemoryDocstore
|
| 11 |
+
from langchain_community.llms import HuggingFaceHub
|
| 12 |
+
from langchain.chains import RetrievalQA
|
| 13 |
+
from langchain.prompts import PromptTemplate
|
| 14 |
+
import faiss
|
| 15 |
+
import uuid
|
| 16 |
+
from dotenv import load_dotenv
|
| 17 |
+
|
| 18 |
+
# Load environment variables
|
| 19 |
+
load_dotenv()
|
| 20 |
+
HUGGINGFACEHUB_API_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN")
|
| 21 |
+
RAG_ACCESS_KEY = os.getenv("RAG_ACCESS_KEY")
|
| 22 |
+
|
| 23 |
+
# Initialize session state
|
| 24 |
+
if "vectorstore" not in st.session_state:
|
| 25 |
+
st.session_state.vectorstore = None
|
| 26 |
+
if "history" not in st.session_state:
|
| 27 |
+
st.session_state.history = []
|
| 28 |
+
if "authenticated" not in st.session_state:
|
| 29 |
+
st.session_state.authenticated = False
|
| 30 |
+
|
| 31 |
+
# Sidebar
|
| 32 |
+
with st.sidebar:
|
| 33 |
+
st.header("RAG Control Panel")
|
| 34 |
+
api_key_input = st.text_input("Enter RAG Access Key", type="password")
|
| 35 |
+
|
| 36 |
+
# Authentication
|
| 37 |
+
if st.button("Authenticate"):
|
| 38 |
+
if api_key_input == RAG_ACCESS_KEY:
|
| 39 |
+
st.session_state.authenticated = True
|
| 40 |
+
st.success("Authentication successful!")
|
| 41 |
+
else:
|
| 42 |
+
st.error("Invalid API key.")
|
| 43 |
+
|
| 44 |
+
# File uploader
|
| 45 |
+
if st.session_state.authenticated:
|
| 46 |
+
input_type = st.selectbox("Select Input Type", ["Single PDF", "Folder/Zip of PDFs"])
|
| 47 |
+
input_data = None
|
| 48 |
+
if input_type == "Single PDF":
|
| 49 |
+
input_data = st.file_uploader("Upload a PDF file", type=["pdf"])
|
| 50 |
+
else:
|
| 51 |
+
input_data = st.file_uploader("Upload a folder or zip of PDFs", type=["zip"])
|
| 52 |
+
|
| 53 |
+
if st.button("Process Files") and input_data is not None:
|
| 54 |
+
with st.spinner("Processing files..."):
|
| 55 |
+
vector_store = process_input(input_type, input_data)
|
| 56 |
+
st.session_state.vectorstore = vector_store
|
| 57 |
+
st.success("Files processed successfully. You can now ask questions.")
|
| 58 |
+
|
| 59 |
+
# Display chat history
|
| 60 |
+
st.subheader("Chat History")
|
| 61 |
+
for i, (q, a) in enumerate(st.session_state.history):
|
| 62 |
+
st.write(f"**Q{i+1}:** {q}")
|
| 63 |
+
st.write(f"**A{i+1}:** {a}")
|
| 64 |
+
st.markdown("---")
|
| 65 |
+
|
| 66 |
+
# Main app
|
| 67 |
+
def main():
|
| 68 |
+
st.title("RAG Q&A App with Mistral AI")
|
| 69 |
+
|
| 70 |
+
if not st.session_state.authenticated:
|
| 71 |
+
st.warning("Please authenticate with your API key in the sidebar.")
|
| 72 |
+
return
|
| 73 |
+
|
| 74 |
+
if st.session_state.vectorstore is None:
|
| 75 |
+
st.info("Please upload and process a PDF or folder/zip of PDFs in the sidebar.")
|
| 76 |
+
return
|
| 77 |
+
|
| 78 |
+
query = st.text_input("Enter your question:")
|
| 79 |
+
if st.button("Submit") and query:
|
| 80 |
+
with st.spinner("Generating answer..."):
|
| 81 |
+
answer = answer_question(st.session_state.vectorstore, query)
|
| 82 |
+
st.session_state.history.append((query, answer))
|
| 83 |
+
st.write("**Answer:**", answer)
|
| 84 |
+
|
| 85 |
+
def process_input(input_type, input_data):
|
| 86 |
+
# Create uploads directory
|
| 87 |
+
os.makedirs("uploads", exist_ok=True)
|
| 88 |
+
|
| 89 |
+
documents = ""
|
| 90 |
+
if input_type == "Single PDF":
|
| 91 |
+
pdf_reader = PdfReader(input_data)
|
| 92 |
+
for page in pdf_reader.pages:
|
| 93 |
+
documents += page.extract_text() or ""
|
| 94 |
+
else:
|
| 95 |
+
# Handle zip file
|
| 96 |
+
zip_path = "uploads/uploaded.zip"
|
| 97 |
+
with open(zip_path, "wb") as f:
|
| 98 |
+
f.write(input_data.getvalue())
|
| 99 |
+
with zipfile.ZipFile(zip_path, "r") as zip_ref:
|
| 100 |
+
zip_ref.extractall("uploads/extracted")
|
| 101 |
+
|
| 102 |
+
# Process all PDFs in extracted folder
|
| 103 |
+
for root, _, files in os.walk("uploads/extracted"):
|
| 104 |
+
for file in files:
|
| 105 |
+
if file.endswith(".pdf"):
|
| 106 |
+
pdf_path = os.path.join(root, file)
|
| 107 |
+
pdf_reader = PdfReader(pdf_path)
|
| 108 |
+
for page in pdf_reader.pages:
|
| 109 |
+
documents += page.extract_text() or ""
|
| 110 |
+
|
| 111 |
+
# Clean up extracted files
|
| 112 |
+
shutil.rmtree("uploads/extracted", ignore_errors=True)
|
| 113 |
+
os.remove(zip_path)
|
| 114 |
+
|
| 115 |
+
# Split text
|
| 116 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
|
| 117 |
+
texts = text_splitter.split_text(documents)
|
| 118 |
+
|
| 119 |
+
# Create embeddings
|
| 120 |
+
hf_embeddings = HuggingFaceEmbeddings(
|
| 121 |
+
model_name="sentence-transformers/all-mpnet-base-v2",
|
| 122 |
+
model_kwargs={'device': 'cpu'}
|
| 123 |
+
)
|
| 124 |
+
|
| 125 |
+
# Initialize FAISS
|
| 126 |
+
dimension = len(hf_embeddings.embed_query("sample text"))
|
| 127 |
+
index = faiss.IndexFlatL2(dimension)
|
| 128 |
+
vector_store = FAISS(
|
| 129 |
+
embedding_function=hf_embeddings,
|
| 130 |
+
index=index,
|
| 131 |
+
docstore=InMemoryDocstore({}),
|
| 132 |
+
index_to_docstore_id={}
|
| 133 |
+
)
|
| 134 |
+
|
| 135 |
+
# Add texts to vector store
|
| 136 |
+
uuids = [str(uuid.uuid4()) for _ in range(len(texts))]
|
| 137 |
+
vector_store.add_texts(texts, ids=uuids)
|
| 138 |
+
|
| 139 |
+
# Save vector store locally
|
| 140 |
+
vector_store.save_local("vectorstore/faiss_index")
|
| 141 |
+
|
| 142 |
+
return vector_store
|
| 143 |
+
|
| 144 |
+
def answer_question(vectorstore, query):
|
| 145 |
+
llm = HuggingFaceHub(
|
| 146 |
+
repo_id="mistralai/Mistral-7B-Instruct-v0.1",
|
| 147 |
+
model_kwargs={"temperature": 0.7, "max_length": 512},
|
| 148 |
+
huggingfacehub_api_token=HUGGINGFACEHUB_API_TOKEN
|
| 149 |
+
)
|
| 150 |
+
|
| 151 |
+
retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
|
| 152 |
+
|
| 153 |
+
prompt_template = PromptTemplate(
|
| 154 |
+
template="Use the provided context to answer the question concisely:\n\nContext: {context}\n\nQuestion: {question}\n\nAnswer:",
|
| 155 |
+
input_variables=["context", "question"]
|
| 156 |
+
)
|
| 157 |
+
|
| 158 |
+
qa_chain = RetrievalQA.from_chain_type(
|
| 159 |
+
llm=llm,
|
| 160 |
+
chain_type="stuff",
|
| 161 |
+
retriever=retriever,
|
| 162 |
+
return_source_documents=False,
|
| 163 |
+
chain_type_kwargs={"prompt": prompt_template}
|
| 164 |
+
)
|
| 165 |
+
|
| 166 |
+
result = qa_chain({"query": query})
|
| 167 |
+
return result["result"].split("Answer:")[-1].strip()
|
| 168 |
+
|
| 169 |
+
if __name__ == "__main__":
|
| 170 |
+
main()
|