Spaces:
Sleeping
Sleeping
File size: 16,147 Bytes
2832da8 c151c44 ed5b42d c151c44 2832da8 8fde879 2832da8 17ea087 8fde879 ed5b42d 17ea087 c151c44 2832da8 c151c44 ed5b42d 2832da8 ed5b42d 2832da8 ed5b42d 2832da8 ed5b42d c151c44 2832da8 30989e3 c151c44 2832da8 fefb5c9 c151c44 2832da8 c151c44 fefb5c9 2832da8 fefb5c9 2832da8 fefb5c9 2832da8 fefb5c9 2832da8 fefb5c9 2832da8 fefb5c9 2832da8 fefb5c9 2832da8 77e56ff 2832da8 dcefa44 2832da8 77e56ff c151c44 2832da8 77e56ff c151c44 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 |
from fastapi import FastAPI, HTTPException, Query, Path
from fastapi.responses import JSONResponse
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from backend.utils import generate_completions
from backend import config
from backend.db import db
from backend.db_init import db_initializer
from backend.content_generator import content_generator
from backend.db_cache import api_cache
from typing import Union, List, Literal, Optional
from datetime import datetime
import logging
import json
logging.basicConfig(level=logging.INFO)
app = FastAPI(title="AI Language Tutor API", version="2.0.0")
# Add CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
class MetadataRequest(BaseModel):
query: str
user_id: Optional[int] = None
class GenerationRequest(BaseModel):
user_id: int
query: Union[str, List[dict]]
native_language: Optional[str] = None
target_language: Optional[str] = None
proficiency: Optional[str] = None
@app.on_event("startup")
async def startup_event():
"""Initialize database on startup with comprehensive checks"""
logging.info("Starting database initialization...")
# Initialize database with health checks
init_result = await db_initializer.initialize_database()
if init_result["success"]:
logging.info(f"Database initialization successful: {init_result['action_taken']}")
# Log database statistics
health = init_result["health_check"]
if health.get("record_count"):
logging.info(f"Database records: {health['record_count']}")
else:
logging.error(f"Database initialization failed: {init_result['errors']}")
# Try to repair
logging.info("Attempting database repair...")
repair_result = await db_initializer.repair_database()
if repair_result["success"]:
logging.info("Database repair successful")
else:
logging.error(f"Database repair failed: {repair_result['errors']}")
raise RuntimeError("Failed to initialize database")
@app.get("/")
async def root():
return {"message": "Welcome to the AI Language Tutor API v2.0!"}
@app.get("/health")
async def health_check():
"""Comprehensive health check including database status"""
try:
# Check database health
db_health = await db_initializer.check_database_health()
# Overall health status
is_healthy = (
db_health["database_exists"] and
db_health["schema_loaded"] and
db_health["can_write"]
)
return JSONResponse(
content={
"status": "healthy" if is_healthy else "unhealthy",
"api_version": "2.0.0",
"database": db_health,
"timestamp": datetime.now().isoformat()
},
status_code=200 if is_healthy else 503
)
except Exception as e:
return JSONResponse(
content={
"status": "error",
"error": str(e),
"timestamp": datetime.now().isoformat()
},
status_code=500
)
@app.post("/admin/database/repair")
async def repair_database():
"""Repair database issues (admin endpoint)"""
try:
# repair_result = await db.repair_database() # This method doesn't exist on the Database class
return JSONResponse(
content={
"success": repair_result["success"],
"repairs_attempted": repair_result["repairs_attempted"],
"errors": repair_result["errors"],
"timestamp": datetime.now().isoformat()
},
status_code=200 if repair_result["success"] else 500
)
except Exception as e:
return JSONResponse(
content={
"success": False,
"error": str(e),
"timestamp": datetime.now().isoformat()
},
status_code=500
)
@app.post("/admin/database/recreate")
async def recreate_database():
"""Recreate database from scratch (admin endpoint)"""
try:
init_result = await db_initializer.initialize_database(force_recreate=True)
return JSONResponse(
content={
"success": init_result["success"],
"action_taken": init_result["action_taken"],
"health_check": init_result["health_check"],
"errors": init_result["errors"],
"timestamp": datetime.now().isoformat()
},
status_code=200 if init_result["success"] else 500
)
except Exception as e:
return JSONResponse(
content={
"success": False,
"error": str(e),
"timestamp": datetime.now().isoformat()
},
status_code=500
)
# ========== POST ENDPOINTS (Generation) ==========
@app.post("/extract/metadata")
async def extract_metadata(data: MetadataRequest):
"""Extract language learning metadata from user query"""
logging.info(f"Extracting metadata for query: {data.query[:50]}...")
try:
# Generate metadata using AI, with caching
metadata_dict = await api_cache.get_or_set(
category="metadata",
key_text=data.query,
coro=generate_completions.get_completions,
prompt=data.query,
instructions=config.language_metadata_extraction_prompt
)
# Check for existing curriculum first before creating new metadata extraction
existing_curriculum = await db.find_existing_curriculum(
query=data.query,
native_language=metadata_dict['native_language'],
target_language=metadata_dict['target_language'],
proficiency=metadata_dict['proficiency'],
user_id=None # Make it user-independent
)
if existing_curriculum:
# Found existing curriculum - return it regardless of user
logging.info(f"Found existing curriculum for query '{data.query[:50]}...': {existing_curriculum['id']}")
return JSONResponse(
content={
"message": "Found existing curriculum for your query.",
"curriculum_id": existing_curriculum['id'],
"status_endpoint": f"/content/status/{existing_curriculum['id']}",
"cached": True
},
status_code=200
)
# No suitable existing curriculum found, generate new one
logging.info(f"No existing curriculum found, generating new one for user {data.user_id}")
# Save metadata to database
extraction_id = await db.save_metadata_extraction(
query=data.query,
metadata=metadata_dict,
user_id=data.user_id
)
# Process extraction (generate curriculum and start content generation)
processing_result = await content_generator.process_metadata_extraction(
extraction_id=extraction_id,
query=data.query,
metadata=metadata_dict,
user_id=data.user_id,
generate_content=True # Automatically generate all content
)
curriculum_id = processing_result['curriculum_id']
return JSONResponse(
content={
"message": "Content generation has been initiated.",
"curriculum_id": curriculum_id,
"status_endpoint": f"/content/status/{curriculum_id}",
"cached": False
},
status_code=202
)
except Exception as e:
logging.error(f"Error extracting metadata: {e}")
raise HTTPException(status_code=500, detail=str(e))
# ========== GET ENDPOINTS (Retrieval) ==========
@app.get("/curriculum/{curriculum_id}/metadata")
async def get_curriculum_metadata(curriculum_id: str = Path(..., description="Curriculum ID")):
"""Get metadata for a curriculum"""
curriculum = await db.get_curriculum(curriculum_id)
if not curriculum:
raise HTTPException(status_code=404, detail="Curriculum not found")
# Get the full metadata extraction record
extraction = await db.get_metadata_extraction(curriculum['metadata_extraction_id'])
if not extraction:
raise HTTPException(status_code=404, detail="Metadata extraction not found")
# Parse JSON fields
extraction['metadata'] = json.loads(extraction['metadata_json'])
del extraction['metadata_json']
return JSONResponse(content=extraction, status_code=200)
@app.get("/curriculum/{curriculum_id}")
async def get_curriculum(curriculum_id: str = Path(..., description="Curriculum ID")):
"""Get curriculum by ID"""
curriculum = await db.get_full_curriculum_details(curriculum_id, include_content=False)
if not curriculum:
raise HTTPException(status_code=404, detail="Curriculum not found")
# Get content generation status
status = await db.get_curriculum_content_status(curriculum_id)
if status:
curriculum['content_status'] = status
return JSONResponse(content=curriculum, status_code=200)
async def _get_lesson_content_by_type(
curriculum_id: str,
lesson_index: int,
content_type: str
):
"""Helper to get specific content type for a lesson"""
content_list = await db.get_learning_content(
curriculum_id=curriculum_id,
lesson_index=lesson_index,
content_type=content_type
)
if not content_list:
raise HTTPException(
status_code=404,
detail=f"{content_type.capitalize()} content not found for lesson {lesson_index}"
)
# Assuming one content item per type per lesson
content = content_list[0]
try:
parsed_content = json.loads(content['content_json'])
except json.JSONDecodeError:
parsed_content = content['content_json']
return JSONResponse(
content={
"curriculum_id": curriculum_id,
"lesson_index": lesson_index,
"content_type": content_type,
"id": content['id'],
"lesson_topic": content['lesson_topic'],
"content": parsed_content,
"created_at": content['created_at']
},
status_code=200
)
@app.get("/curriculum/{curriculum_id}/lesson/{lesson_index}/flashcards")
async def get_lesson_flashcards(
curriculum_id: str = Path(..., description="Curriculum ID"),
lesson_index: int = Path(..., ge=0, le=24, description="Lesson index (0-24)")
):
"""Get flashcards for a specific lesson"""
return await _get_lesson_content_by_type(curriculum_id, lesson_index, "flashcards")
@app.get("/curriculum/{curriculum_id}/lesson/{lesson_index}/exercises")
async def get_lesson_exercises(
curriculum_id: str = Path(..., description="Curriculum ID"),
lesson_index: int = Path(..., ge=0, le=24, description="Lesson index (0-24)")
):
"""Get exercises for a specific lesson"""
return await _get_lesson_content_by_type(curriculum_id, lesson_index, "exercises")
@app.get("/curriculum/{curriculum_id}/lesson/{lesson_index}/simulation")
async def get_lesson_simulation(
curriculum_id: str = Path(..., description="Curriculum ID"),
lesson_index: int = Path(..., ge=0, le=24, description="Lesson index (0-24)")
):
"""Get simulation for a specific lesson"""
return await _get_lesson_content_by_type(curriculum_id, lesson_index, "simulation")
@app.get("/user/{user_id}/metadata")
async def get_user_metadata_history(
user_id: int = Path(..., description="User ID"),
limit: int = Query(20, ge=1, le=100, description="Maximum number of results")
):
"""Get user's metadata extraction history"""
extractions = await db.get_user_metadata_extractions(user_id, limit)
# Parse JSON fields
for extraction in extractions:
extraction['metadata'] = json.loads(extraction['metadata_json'])
del extraction['metadata_json']
return JSONResponse(
content={
"user_id": user_id,
"extractions": extractions,
"total": len(extractions)
},
status_code=200
)
@app.get("/user/{user_id}/curricula")
async def get_user_curricula(
user_id: int = Path(..., description="User ID"),
limit: int = Query(20, ge=1, le=100, description="Maximum number of results")
):
"""Get user's curricula"""
curricula = await db.get_user_curricula(user_id, limit)
# Parse JSON fields and get content status
for curriculum in curricula:
curriculum['curriculum'] = json.loads(curriculum['curriculum_json'])
del curriculum['curriculum_json']
# Get content status
status = await db.get_curriculum_content_status(curriculum['id'])
if status:
curriculum['content_status'] = status
return JSONResponse(
content={
"user_id": user_id,
"curricula": curricula,
"total": len(curricula)
},
status_code=200
)
@app.get("/user/{user_id}/journeys")
async def get_user_learning_journeys(
user_id: int = Path(..., description="User ID"),
limit: int = Query(20, ge=1, le=100, description="Maximum number of results")
):
"""Get user's complete learning journeys (metadata + curriculum info)"""
journeys = await db.get_user_learning_journeys(user_id, limit)
return JSONResponse(
content={
"user_id": user_id,
"journeys": journeys,
"total": len(journeys)
},
status_code=200
)
@app.get("/search/curricula")
async def search_curricula(
native_language: str = Query(..., description="Native language"),
target_language: str = Query(..., description="Target language"),
proficiency: Optional[str] = Query(None, description="Proficiency level"),
limit: int = Query(10, ge=1, le=50, description="Maximum number of results")
):
"""Search for existing curricula by language combination"""
curricula = await db.search_curricula_by_languages(
native_language=native_language,
target_language=target_language,
proficiency=proficiency,
limit=limit
)
# Parse JSON fields
for curriculum in curricula:
curriculum['curriculum'] = json.loads(curriculum['curriculum_json'])
del curriculum['curriculum_json']
return JSONResponse(
content={
"search_params": {
"native_language": native_language,
"target_language": target_language,
"proficiency": proficiency
},
"curricula": curricula,
"total": len(curricula)
},
status_code=200
)
@app.get("/content/status/{curriculum_id}")
async def get_content_generation_status(
curriculum_id: str = Path(..., description="Curriculum ID")
):
"""Check content generation status for a curriculum"""
status = await db.get_curriculum_content_status(curriculum_id)
if not status:
raise HTTPException(status_code=404, detail="Curriculum not found")
# Calculate completion percentage
total_lessons = 25
total_content_types = 3 # flashcards, exercises, simulation
total_expected = total_lessons * total_content_types
total_generated = (
status['lessons_with_flashcards'] +
status['lessons_with_exercises'] +
status['lessons_with_simulations']
)
completion_percentage = (total_generated / total_expected) * 100 if total_expected > 0 else 0
return JSONResponse(
content={
"curriculum_id": curriculum_id,
"status": status,
"completion_percentage": round(completion_percentage, 2),
"is_complete": completion_percentage >= 100
},
status_code=200
)
|