Spaces:
Sleeping
Sleeping
| # coding=utf-8 | |
| # Copyright 2023 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import json | |
| import os | |
| from dataclasses import asdict, dataclass | |
| from pathlib import Path | |
| from typing import Any, Dict, List, Optional, Type, TypeVar, Union | |
| from huggingface_hub import ModelHubMixin, hf_hub_download | |
| # Generic variable that is either ModelHubMixin or a subclass thereof | |
| T = TypeVar("T", bound="ModelHubMixin") | |
| TEMPLATE_FILENAME = "dialogue_template.json" | |
| IGNORE_INDEX = -100 | |
| class DialogueTemplate(ModelHubMixin): | |
| """Converts all turns of a dialogue between a user and assistant to a standardized format. | |
| Adapted from OpenAI's ChatML (https://github.com/openai/openai-python/blob/main/chatml.md) and Vicuna (https://github.com/lm-sys/FastChat/blob/main/fastchat/conversation.py) | |
| """ | |
| system: str | |
| messages: List[Dict[str, str]] = None | |
| system_token: str = "<|system|>" | |
| user_token: str = "<|user|>" | |
| assistant_token: str = "<|assistant|>" | |
| end_token: str = "<|end|>" | |
| def get_training_prompt(self) -> str: | |
| prompt = self.system_token + "\n" + self.system + self.end_token + "\n" | |
| if self.messages is None: | |
| raise ValueError("Dialogue template must have at least one message.") | |
| for message in self.messages: | |
| if message["role"] == "user": | |
| prompt += self.user_token + "\n" + message["content"] + self.end_token + "\n" | |
| else: | |
| prompt += self.assistant_token + "\n" + message["content"] + self.end_token + "\n" | |
| return prompt | |
| def get_inference_prompt(self) -> str: | |
| prompt = self.system_token + "\n" + self.system + self.end_token + "\n" | |
| if self.messages is None: | |
| raise ValueError("Dialogue template must have at least one message.") | |
| for message in self.messages: | |
| if message["role"] == "user": | |
| prompt += self.user_token + "\n" + message["content"] + self.end_token + "\n" | |
| else: | |
| prompt += self.assistant_token + "\n" + message["content"] + self.end_token + "\n" | |
| prompt += self.assistant_token | |
| return prompt | |
| def get_dialogue(self): | |
| """Helper function to format the messages as an easy-to-read dialogue.""" | |
| prompt = "" | |
| if self.messages is None: | |
| raise ValueError("Dialogue template must have at least one message.") | |
| for message in self.messages: | |
| if message["role"] == "user": | |
| prompt += "\n\nHuman: " + message["content"] | |
| else: | |
| prompt += "\n\nAssistant: " + message["content"] | |
| return prompt | |
| def get_special_tokens(self) -> List[str]: | |
| return [self.system_token, self.user_token, self.assistant_token, self.end_token] | |
| def copy(self): | |
| return DialogueTemplate( | |
| system=self.system, | |
| messages=self.messages, | |
| system_token=self.system_token, | |
| user_token=self.user_token, | |
| assistant_token=self.assistant_token, | |
| end_token=self.end_token, | |
| ) | |
| def to_dict(self) -> Dict[str, Any]: | |
| return {k: v for k, v in asdict(self).items()} | |
| def from_dict(cls, data): | |
| return DialogueTemplate( | |
| system=data["system"] if "system" in data else "", | |
| messages=data["messages"] if "messages" in data else None, | |
| system_token=data["system_token"] if "system_token" in data else "<|system|>", | |
| user_token=data["user_token"] if "user_token" in data else "<|user|>", | |
| assistant_token=data["assistant_token"] if "assistant_token" in data else "<|assistant|>", | |
| end_token=data["end_token"] if "end_token" in data else "<|end|>", | |
| ) | |
| def _save_pretrained(self, save_directory: Union[str, Path]) -> None: | |
| save_directory = Path(save_directory) | |
| save_directory.mkdir(exist_ok=True) | |
| with open(save_directory / "dialogue_template.json", "w") as f: | |
| json.dump(self.to_dict(), f, indent=2) | |
| def _from_pretrained( | |
| cls: Type[T], | |
| *, | |
| model_id: str, | |
| revision: Optional[str], | |
| cache_dir: Optional[Union[str, Path]], | |
| force_download: bool, | |
| proxies: Optional[Dict], | |
| resume_download: bool, | |
| local_files_only: bool, | |
| token: Optional[Union[str, bool]], | |
| **model_kwargs, | |
| ) -> T: | |
| """Loads the dialogue template from a local directory or the Huggingface Hub. | |
| Args: | |
| model_id (`str`): | |
| ID of the model to load from the Huggingface Hub (e.g. `bigscience/bloom`). | |
| revision (`str`, *optional*): | |
| Revision of the model on the Hub. Can be a branch name, a git tag or any commit id. Defaults to the | |
| latest commit on `main` branch. | |
| force_download (`bool`, *optional*, defaults to `False`): | |
| Whether to force (re-)downloading the model weights and configuration files from the Hub, overriding | |
| the existing cache. | |
| resume_download (`bool`, *optional*, defaults to `False`): | |
| Whether to delete incompletely received files. Will attempt to resume the download if such a file exists. | |
| proxies (`Dict[str, str]`, *optional*): | |
| A dictionary of proxy servers to use by protocol or endpoint (e.g., `{'http': 'foo.bar:3128', | |
| 'http://hostname': 'foo.bar:4012'}`). | |
| token (`str` or `bool`, *optional*): | |
| The token to use as HTTP bearer authorization for remote files. By default, it will use the token | |
| cached when running `huggingface-cli login`. | |
| cache_dir (`str`, `Path`, *optional*): | |
| Path to the folder where cached files are stored. | |
| local_files_only (`bool`, *optional*, defaults to `False`): | |
| If `True`, avoid downloading the file and return the path to the local cached file if it exists. | |
| model_kwargs: | |
| Additional keyword arguments passed along to the [`~ModelHubMixin._from_pretrained`] method. | |
| """ | |
| if os.path.isdir(model_id): # Can either be a local directory | |
| print("Loading dialogue template from local directory") | |
| template_file = os.path.join(model_id, TEMPLATE_FILENAME) | |
| else: # Or a template on the Hub | |
| template_file = hf_hub_download( # Download from the hub, passing same input args | |
| repo_id=model_id, | |
| filename=TEMPLATE_FILENAME, | |
| revision=revision, | |
| cache_dir=cache_dir, | |
| force_download=force_download, | |
| proxies=proxies, | |
| resume_download=resume_download, | |
| token=token, | |
| local_files_only=local_files_only, | |
| ) | |
| # Load template | |
| with open(template_file, "r") as f: | |
| data = json.load(f) | |
| return cls.from_dict(data=data) | |
| # A shortened version of the system message in Anthropic's HHH prompt: https://gist.github.com/jareddk/2509330f8ef3d787fc5aaac67aab5f11#file-hhh_prompt-txt | |
| default_template = DialogueTemplate( | |
| system="Below is a dialogue between a human user and an AI assistant. The assistant is happy to help with almost anything, and will do its best to understand exactly what is needed.", | |
| ) | |
| # OpenAI and OpenAssistant train on few to no system messages. | |
| # TODO: consider defining this as the `default` template | |
| no_system_template = DialogueTemplate( | |
| system="", | |
| ) | |
| alpaca_template = DialogueTemplate( | |
| system="Below is an instruction that describes a task. Write a response that appropriately completes the request.", | |
| user_token="### Instruction:", | |
| assistant_token="### Response:", | |
| ) | |
| SUPPORTED_DIALOGUE_TEMPLATES = { | |
| "default": default_template, | |
| "no_system": no_system_template, | |
| "alpaca": alpaca_template, | |
| } | |
| def get_dialogue_template(template: str) -> DialogueTemplate: | |
| if template not in SUPPORTED_DIALOGUE_TEMPLATES.keys(): | |
| raise ValueError(f"Template {template} is not supported!") | |
| return SUPPORTED_DIALOGUE_TEMPLATES[template].copy() | |
| def prepare_dialogue(example, dialogue_template, is_train=True): | |
| """Format example to single- or multi-turn dialogue.""" | |
| # TODO: make this simpler by just ensuring every dataset has a messages column | |
| if "messages" in example.keys() and example["messages"] is not None: | |
| dialogue_template.messages = example["messages"] | |
| elif all(k in example.keys() for k in ("prompt", "completion")): | |
| # Construct single-turn dialogue from prompt and completion | |
| dialogue_template.messages = [ | |
| {"role": "user", "content": example["prompt"]}, | |
| {"role": "assistant", "content": example["completion"]}, | |
| ] | |
| elif "prompt" in example.keys(): | |
| # Construct single-turn dialogue from prompt (inference only) | |
| dialogue_template.messages = [ | |
| {"role": "user", "content": example["prompt"]}, | |
| ] | |
| else: | |
| raise ValueError( | |
| f"Could not format example as dialogue! Require either `messages` or `[prompt, completion]` or `[prompt]` keys but found {list(example.keys())}" | |
| ) | |
| if is_train: | |
| example["text"] = dialogue_template.get_training_prompt() | |
| else: | |
| example["text"] = dialogue_template.get_inference_prompt() | |
| return example | |
| def mask_user_labels(tokenizer, dialogue_template, labels): | |
| """Masks the user turns of a dialogue from the loss""" | |
| user_token_id = tokenizer.convert_tokens_to_ids(dialogue_template.user_token) | |
| assistant_token_id = tokenizer.convert_tokens_to_ids(dialogue_template.assistant_token) | |
| for idx, label_id in enumerate(labels): | |
| if label_id == user_token_id: | |
| current_idx = idx | |
| while labels[current_idx] != assistant_token_id and current_idx < len(labels): | |
| labels[current_idx] = IGNORE_INDEX | |
| current_idx += 1 | |