sidon_demo_beta / app.py
Wataru's picture
Update app.py
89764aa verified
import gradio as gr
import numpy as np
import torch
import torchaudio
import transformers
import spaces
from huggingface_hub import hf_hub_download
fe_path = hf_hub_download("sarulab-speech/sidon-v0.1", filename="feature_extractor_cuda.pt")
decoder_path = hf_hub_download("sarulab-speech/sidon-v0.1", filename="decoder_cuda.pt")
preprocessor = transformers.SeamlessM4TFeatureExtractor.from_pretrained(
"facebook/w2v-bert-2.0"
)
@spaces.GPU
@torch.inference_mode()
def denoise_speech(audio):
fe = torch.jit.load(fe_path,map_location='cuda').to('cuda')
decoder = torch.jit.load(decoder_path,map_location='cuda').to('cuda')
if audio is None:
return None
sample_rate, waveform = audio
waveform = 0.9 * (waveform / np.abs(waveform).max())
target_n_samples = int(48_000/sample_rate* waveform.shape[0])
# Ensure waveform is a tensor
if not isinstance(waveform, torch.Tensor):
waveform = torch.tensor(waveform, dtype=torch.float32)
# If stereo, convert to mono
if waveform.ndim > 1 and waveform.shape[0] > 1:
waveform = torch.mean(waveform, dim=1)
# Add a batch dimension
waveform = waveform.view(1, -1)
wav = torchaudio.functional.highpass_biquad(waveform, sample_rate, 50)
wav_16k = torchaudio.functional.resample(wav, sample_rate, 16_000)
restoreds = []
features =[]
feature_cache = None
wav_16k = torch.nn.functional.pad(wav_16k,(0,24000))
for chunk in wav_16k.view(-1).split(16000 * 96):
inputs = preprocessor(
torch.nn.functional.pad(chunk, (160, 160)), return_tensors="pt"
).to('cpu')
with torch.inference_mode():
feature = fe(inputs["input_features"].to("cuda"))["last_hidden_state"]
if feature_cache is not None:
feature = torch.cat([feature_cache,feature],dim=1)
restoreds.append(decoder(feature.transpose(1,2)).view(-1)[:-960])
feature_cache = feature[:,-1:]
restored_wav = torch.cat(restoreds,dim=0)
return 48_000, (restored_wav.view(-1, 1).cpu().numpy() * 32767).astype(np.int16)[:target_n_samples]
# Create the Gradio interface
iface = gr.Interface(
fn=denoise_speech,
inputs=gr.Audio(type="numpy", label="Noisy Speech"),
outputs=gr.Audio(type="numpy", label="Restored Speech"),
title="Sidon Speech Restoration",
description="Upload a noisy audio file and the Sidon will restore it.",
)
if __name__ == "__main__":
iface.launch()