Abigail
commited on
Commit
·
5817c5e
1
Parent(s):
1f2d661
first commit tts and stt with multiple stt possibilities
Browse files- .DS_Store +0 -0
- stttotts.py +177 -0
.DS_Store
ADDED
|
Binary file (6.15 kB). View file
|
|
|
stttotts.py
ADDED
|
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
"""sttToTts.ipynb
|
| 3 |
+
|
| 4 |
+
Automatically generated by Colaboratory.
|
| 5 |
+
|
| 6 |
+
Original file is located at
|
| 7 |
+
https://colab.research.google.com/drive/15QqRKFSwfhRdnaj5-R1z6xFfeEOOta38
|
| 8 |
+
"""
|
| 9 |
+
|
| 10 |
+
#text-to-speech and speech to text
|
| 11 |
+
!pip install TTS
|
| 12 |
+
!pip install transformers
|
| 13 |
+
|
| 14 |
+
#text to speech
|
| 15 |
+
from TTS.api import TTS
|
| 16 |
+
tts = TTS("tts_models/multilingual/multi-dataset/your_tts", cs_api_model = "TTS.cs_api.CS_API", gpu=True)
|
| 17 |
+
|
| 18 |
+
#voice recording
|
| 19 |
+
import IPython.display
|
| 20 |
+
import google.colab.output
|
| 21 |
+
import base64
|
| 22 |
+
# all imports for voice recording
|
| 23 |
+
from IPython.display import Javascript
|
| 24 |
+
from google.colab import output
|
| 25 |
+
from base64 import b64decode
|
| 26 |
+
|
| 27 |
+
#to record sound, found on https://gist.github.com/korakot/c21c3476c024ad6d56d5f48b0bca92be
|
| 28 |
+
|
| 29 |
+
RECORD = """
|
| 30 |
+
const sleep = time => new Promise(resolve => setTimeout(resolve, time))
|
| 31 |
+
const b2text = blob => new Promise(resolve => {
|
| 32 |
+
const reader = new FileReader()
|
| 33 |
+
reader.onloadend = e => resolve(e.srcElement.result)
|
| 34 |
+
reader.readAsDataURL(blob)
|
| 35 |
+
})
|
| 36 |
+
var record = time => new Promise(async resolve => {
|
| 37 |
+
stream = await navigator.mediaDevices.getUserMedia({ audio: true })
|
| 38 |
+
recorder = new MediaRecorder(stream)
|
| 39 |
+
chunks = []
|
| 40 |
+
recorder.ondataavailable = e => chunks.push(e.data)
|
| 41 |
+
recorder.start()
|
| 42 |
+
await sleep(time)
|
| 43 |
+
recorder.onstop = async ()=>{
|
| 44 |
+
blob = new Blob(chunks)
|
| 45 |
+
text = await b2text(blob)
|
| 46 |
+
resolve(text)
|
| 47 |
+
}
|
| 48 |
+
recorder.stop()
|
| 49 |
+
})
|
| 50 |
+
"""
|
| 51 |
+
|
| 52 |
+
def record(name, sec):
|
| 53 |
+
display(Javascript(RECORD))
|
| 54 |
+
s = output.eval_js('record(%d)' % (sec*1000))
|
| 55 |
+
b = b64decode(s.split(',')[1])
|
| 56 |
+
with open(f'{name}.webm','wb') as f:
|
| 57 |
+
f.write(b)
|
| 58 |
+
return (f'{name}.webm') # or webm ?
|
| 59 |
+
|
| 60 |
+
#to record the text which is going to be transcribed
|
| 61 |
+
record('audio', sec = 10)
|
| 62 |
+
|
| 63 |
+
#works -- speech-to-text with an audio I provide the path to reach
|
| 64 |
+
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
| 65 |
+
import librosa
|
| 66 |
+
|
| 67 |
+
# load model and processor
|
| 68 |
+
processor = WhisperProcessor.from_pretrained("openai/whisper-small")
|
| 69 |
+
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small")
|
| 70 |
+
model.config.forced_decoder_ids = None
|
| 71 |
+
|
| 72 |
+
# load audio from a specific path
|
| 73 |
+
audio_path = "audio.webm"
|
| 74 |
+
audio_array, sampling_rate = librosa.load(audio_path, sr=16000) # "sr=16000" ensures that the sampling rate is as required
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
# process the audio array
|
| 78 |
+
input_features = processor(audio_array, sampling_rate, return_tensors="pt").input_features
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
predicted_ids = model.generate(input_features)
|
| 82 |
+
|
| 83 |
+
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
| 84 |
+
print(transcription)
|
| 85 |
+
|
| 86 |
+
#to record the speaker's voice used for tts
|
| 87 |
+
record('speaker', sec = 10 )
|
| 88 |
+
|
| 89 |
+
#library to convert digits to words (ex : 1 --> one)
|
| 90 |
+
import locale
|
| 91 |
+
locale.getpreferredencoding = lambda: "UTF-8"
|
| 92 |
+
!pip install inflect
|
| 93 |
+
|
| 94 |
+
import re
|
| 95 |
+
import inflect
|
| 96 |
+
#because numbers under digit format are ignored otherwise
|
| 97 |
+
def convert_numbers_to_words(s):
|
| 98 |
+
p = inflect.engine()
|
| 99 |
+
# Find all sequences of digits in the string
|
| 100 |
+
numbers = re.findall(r'\d+', s)
|
| 101 |
+
for number in numbers:
|
| 102 |
+
# Convert each number to words
|
| 103 |
+
words = p.number_to_words(number)
|
| 104 |
+
# Replace the original number in the string with its word representation
|
| 105 |
+
s = s.replace(number, words)
|
| 106 |
+
return s
|
| 107 |
+
|
| 108 |
+
#model test 1 for text to speech
|
| 109 |
+
#works - text to speech with voice cloner (by providing the path to the audio where the voice is)
|
| 110 |
+
from google.colab import drive
|
| 111 |
+
from IPython.display import Audio
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
tts.tts_to_file(text=convert_numbers_to_words(str(transcription)),
|
| 116 |
+
file_path="output.wav",
|
| 117 |
+
speaker_wav='speaker.webm',
|
| 118 |
+
language="en",
|
| 119 |
+
emotion ='angry',
|
| 120 |
+
speed = 2)
|
| 121 |
+
audio_path = "output.wav"
|
| 122 |
+
Audio(audio_path)
|
| 123 |
+
|
| 124 |
+
#model test 2 for text to speech
|
| 125 |
+
from IPython.display import Audio
|
| 126 |
+
# TTS with on the fly voice conversion
|
| 127 |
+
api = TTS("tts_models/deu/fairseq/vits")
|
| 128 |
+
api.tts_with_vc_to_file(
|
| 129 |
+
text="Wie sage ich auf Italienisch, dass ich dich liebe?",
|
| 130 |
+
speaker_wav="speaker.webm",
|
| 131 |
+
file_path="ouptut.wav"
|
| 132 |
+
)
|
| 133 |
+
audio_path = "output.wav"
|
| 134 |
+
Audio(audio_path)
|
| 135 |
+
|
| 136 |
+
#model test 3 for text to speech
|
| 137 |
+
from TTS.api import TTS
|
| 138 |
+
tts = TTS("tts_models/multilingual/multi-dataset/xtts_v1", gpu=True)
|
| 139 |
+
|
| 140 |
+
from IPython.display import Audio
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
# generate speech by cloning a voice using custom settings
|
| 144 |
+
tts.tts_to_file(text="But for me to rap like a computer it must be in my genes I got a laptop in my back pocket My pen'll go off when I half-cock it Got a fat knot from that rap profit Made a livin' and a killin' off it Ever since Bill Clinton was still in office with Monica Lewinsky feelin' on his nutsack I'm an MC still as honest",
|
| 145 |
+
file_path="output.wav",
|
| 146 |
+
speaker_wav="Slide 1.m4a",
|
| 147 |
+
language="en",
|
| 148 |
+
emotion = "neutral",
|
| 149 |
+
decoder_iterations=35)
|
| 150 |
+
|
| 151 |
+
audio_path = "output.wav"
|
| 152 |
+
Audio(audio_path)
|
| 153 |
+
|
| 154 |
+
# Init TTS with the target studio speaker
|
| 155 |
+
tts = TTS(model_name="coqui_studio/en/Torcull Diarmuid/coqui_studio", progress_bar=False)
|
| 156 |
+
# Run TTS
|
| 157 |
+
tts.tts_to_file(text="This is a test.", file_path=OUTPUT_PATH)
|
| 158 |
+
# Run TTS with emotion and speed control
|
| 159 |
+
tts.tts_to_file(text="This is a test.", file_path=OUTPUT_PATH, emotion="Happy", speed=1.5)
|
| 160 |
+
|
| 161 |
+
#model test 4 for text to speech
|
| 162 |
+
from IPython.display import Audio
|
| 163 |
+
|
| 164 |
+
from TTS.api import TTS
|
| 165 |
+
#api = TTS(model_name="tts_models/eng/fairseq/vits").to("cuda")
|
| 166 |
+
#api.tts_to_file("This is a test.", file_path="output.wav")
|
| 167 |
+
|
| 168 |
+
# TTS with on the fly voice conversion
|
| 169 |
+
api = TTS("tts_models/deu/fairseq/vits")
|
| 170 |
+
api.tts_with_vc_to_file(
|
| 171 |
+
"I am a basic human",
|
| 172 |
+
speaker_wav="speaker.webm",
|
| 173 |
+
file_path="output.wav"
|
| 174 |
+
)
|
| 175 |
+
|
| 176 |
+
audio_path = "output.wav"
|
| 177 |
+
Audio(audio_path)
|