Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -17,12 +17,10 @@ nltk.download('punkt')
|
|
| 17 |
nltk.download('stopwords')
|
| 18 |
nltk.download('averaged_perceptron_tagger')
|
| 19 |
nltk.download('averaged_perceptron_tagger_eng')
|
| 20 |
-
|
| 21 |
nltk.download('wordnet')
|
| 22 |
nltk.download('omw-1.4')
|
| 23 |
nltk.download('punkt_tab')
|
| 24 |
|
| 25 |
-
|
| 26 |
# Initialize stopwords
|
| 27 |
stop_words = set(stopwords.words("english"))
|
| 28 |
|
|
@@ -45,7 +43,6 @@ except OSError:
|
|
| 45 |
|
| 46 |
def plagiarism_removal(text):
|
| 47 |
def plagiarism_remover(word):
|
| 48 |
-
# Handle stopwords, punctuation, and excluded words
|
| 49 |
if word.lower() in stop_words or word.lower() in exclude_words or word in string.punctuation:
|
| 50 |
return word
|
| 51 |
|
|
@@ -53,60 +50,48 @@ def plagiarism_removal(text):
|
|
| 53 |
synonyms = set()
|
| 54 |
for syn in wordnet.synsets(word):
|
| 55 |
for lemma in syn.lemmas():
|
| 56 |
-
# Exclude overly technical synonyms or words with underscores
|
| 57 |
if "_" not in lemma.name() and lemma.name().isalpha() and lemma.name().lower() != word.lower():
|
| 58 |
synonyms.add(lemma.name())
|
| 59 |
|
| 60 |
-
# Get part of speech for word and filter synonyms with the same POS
|
| 61 |
pos_tag_word = nltk.pos_tag([word])[0]
|
| 62 |
-
|
| 63 |
-
# Avoid replacing certain parts of speech
|
| 64 |
if pos_tag_word[1] in exclude_tags:
|
| 65 |
return word
|
| 66 |
|
| 67 |
filtered_synonyms = [syn for syn in synonyms if nltk.pos_tag([syn])[0][1] == pos_tag_word[1]]
|
| 68 |
|
| 69 |
-
# Return original word if no appropriate synonyms found
|
| 70 |
if not filtered_synonyms:
|
| 71 |
return word
|
| 72 |
|
| 73 |
-
# Select a random synonym from the filtered list
|
| 74 |
synonym_choice = random.choice(filtered_synonyms)
|
| 75 |
|
| 76 |
-
# Retain original capitalization
|
| 77 |
if word.istitle():
|
| 78 |
return synonym_choice.title()
|
| 79 |
return synonym_choice
|
| 80 |
|
| 81 |
-
# Tokenize, replace words, and join them back
|
| 82 |
para_split = word_tokenize(text)
|
| 83 |
final_text = [plagiarism_remover(word) for word in para_split]
|
| 84 |
|
| 85 |
-
# Handle spacing around punctuation correctly
|
| 86 |
corrected_text = []
|
| 87 |
for i in range(len(final_text)):
|
| 88 |
if final_text[i] in string.punctuation and i > 0:
|
| 89 |
-
corrected_text[-1] += final_text[i]
|
| 90 |
else:
|
| 91 |
corrected_text.append(final_text[i])
|
| 92 |
|
| 93 |
return " ".join(corrected_text)
|
| 94 |
|
| 95 |
-
# Function to predict the label and score for English text (AI Detection)
|
| 96 |
def predict_en(text):
|
| 97 |
res = pipeline_en(text)[0]
|
| 98 |
return res['label'], res['score']
|
| 99 |
|
| 100 |
-
# Function to remove redundant and meaningless words
|
| 101 |
def remove_redundant_words(text):
|
| 102 |
doc = nlp(text)
|
| 103 |
meaningless_words = {"actually", "basically", "literally", "really", "very", "just"}
|
| 104 |
filtered_text = [token.text for token in doc if token.text.lower() not in meaningless_words]
|
| 105 |
return ' '.join(filtered_text)
|
| 106 |
|
| 107 |
-
# Function to fix spacing before punctuation
|
| 108 |
def fix_punctuation_spacing(text):
|
| 109 |
-
# Split the text into words and punctuation
|
| 110 |
words = text.split(' ')
|
| 111 |
cleaned_words = []
|
| 112 |
punctuation_marks = {',', '.', "'", '!', '?', ':'}
|
|
@@ -120,12 +105,10 @@ def fix_punctuation_spacing(text):
|
|
| 120 |
return ' '.join(cleaned_words).replace(' ,', ',').replace(' .', '.').replace(" '", "'") \
|
| 121 |
.replace(' !', '!').replace(' ?', '?').replace(' :', ':')
|
| 122 |
|
| 123 |
-
# Function to fix possessives like "Earth's"
|
| 124 |
def fix_possessives(text):
|
| 125 |
text = re.sub(r'(\w)\s\'\s?s', r"\1's", text)
|
| 126 |
return text
|
| 127 |
|
| 128 |
-
# Function to capitalize the first letter of sentences and proper nouns
|
| 129 |
def capitalize_sentences_and_nouns(text):
|
| 130 |
doc = nlp(text)
|
| 131 |
corrected_text = []
|
|
@@ -143,7 +126,6 @@ def capitalize_sentences_and_nouns(text):
|
|
| 143 |
|
| 144 |
return ' '.join(corrected_text)
|
| 145 |
|
| 146 |
-
# Function to force capitalization of the first letter of every sentence and ensure full stops
|
| 147 |
def force_first_letter_capital(text):
|
| 148 |
sentences = re.split(r'(?<=\w[.!?])\s+', text)
|
| 149 |
capitalized_sentences = []
|
|
@@ -157,7 +139,6 @@ def force_first_letter_capital(text):
|
|
| 157 |
|
| 158 |
return " ".join(capitalized_sentences)
|
| 159 |
|
| 160 |
-
# Function to correct tense errors in a sentence
|
| 161 |
def correct_tense_errors(text):
|
| 162 |
doc = nlp(text)
|
| 163 |
corrected_text = []
|
|
@@ -169,7 +150,6 @@ def correct_tense_errors(text):
|
|
| 169 |
corrected_text.append(token.text)
|
| 170 |
return ' '.join(corrected_text)
|
| 171 |
|
| 172 |
-
# Function to check and correct article errors
|
| 173 |
def correct_article_errors(text):
|
| 174 |
doc = nlp(text)
|
| 175 |
corrected_text = []
|
|
@@ -186,7 +166,6 @@ def correct_article_errors(text):
|
|
| 186 |
corrected_text.append(token.text)
|
| 187 |
return ' '.join(corrected_text)
|
| 188 |
|
| 189 |
-
# Function to ensure subject-verb agreement
|
| 190 |
def ensure_subject_verb_agreement(text):
|
| 191 |
doc = nlp(text)
|
| 192 |
corrected_text = []
|
|
@@ -199,7 +178,6 @@ def ensure_subject_verb_agreement(text):
|
|
| 199 |
corrected_text.append(token.text)
|
| 200 |
return ' '.join(corrected_text)
|
| 201 |
|
| 202 |
-
# Function to correct spelling errors
|
| 203 |
def correct_spelling(text):
|
| 204 |
words = text.split()
|
| 205 |
corrected_words = []
|
|
@@ -211,21 +189,25 @@ def correct_spelling(text):
|
|
| 211 |
corrected_words.append(word)
|
| 212 |
return ' '.join(corrected_words)
|
| 213 |
|
| 214 |
-
# Main function for paraphrasing and grammar correction
|
| 215 |
def paraphrase_and_correct(text):
|
| 216 |
-
#
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 229 |
|
| 230 |
# Gradio app setup
|
| 231 |
with gr.Blocks() as demo:
|
|
@@ -244,4 +226,4 @@ with gr.Blocks() as demo:
|
|
| 244 |
|
| 245 |
button2.click(fn=paraphrase_and_correct, inputs=t2, outputs=result2)
|
| 246 |
|
| 247 |
-
demo.launch(share=True)
|
|
|
|
| 17 |
nltk.download('stopwords')
|
| 18 |
nltk.download('averaged_perceptron_tagger')
|
| 19 |
nltk.download('averaged_perceptron_tagger_eng')
|
|
|
|
| 20 |
nltk.download('wordnet')
|
| 21 |
nltk.download('omw-1.4')
|
| 22 |
nltk.download('punkt_tab')
|
| 23 |
|
|
|
|
| 24 |
# Initialize stopwords
|
| 25 |
stop_words = set(stopwords.words("english"))
|
| 26 |
|
|
|
|
| 43 |
|
| 44 |
def plagiarism_removal(text):
|
| 45 |
def plagiarism_remover(word):
|
|
|
|
| 46 |
if word.lower() in stop_words or word.lower() in exclude_words or word in string.punctuation:
|
| 47 |
return word
|
| 48 |
|
|
|
|
| 50 |
synonyms = set()
|
| 51 |
for syn in wordnet.synsets(word):
|
| 52 |
for lemma in syn.lemmas():
|
|
|
|
| 53 |
if "_" not in lemma.name() and lemma.name().isalpha() and lemma.name().lower() != word.lower():
|
| 54 |
synonyms.add(lemma.name())
|
| 55 |
|
|
|
|
| 56 |
pos_tag_word = nltk.pos_tag([word])[0]
|
| 57 |
+
|
|
|
|
| 58 |
if pos_tag_word[1] in exclude_tags:
|
| 59 |
return word
|
| 60 |
|
| 61 |
filtered_synonyms = [syn for syn in synonyms if nltk.pos_tag([syn])[0][1] == pos_tag_word[1]]
|
| 62 |
|
|
|
|
| 63 |
if not filtered_synonyms:
|
| 64 |
return word
|
| 65 |
|
|
|
|
| 66 |
synonym_choice = random.choice(filtered_synonyms)
|
| 67 |
|
|
|
|
| 68 |
if word.istitle():
|
| 69 |
return synonym_choice.title()
|
| 70 |
return synonym_choice
|
| 71 |
|
|
|
|
| 72 |
para_split = word_tokenize(text)
|
| 73 |
final_text = [plagiarism_remover(word) for word in para_split]
|
| 74 |
|
|
|
|
| 75 |
corrected_text = []
|
| 76 |
for i in range(len(final_text)):
|
| 77 |
if final_text[i] in string.punctuation and i > 0:
|
| 78 |
+
corrected_text[-1] += final_text[i]
|
| 79 |
else:
|
| 80 |
corrected_text.append(final_text[i])
|
| 81 |
|
| 82 |
return " ".join(corrected_text)
|
| 83 |
|
|
|
|
| 84 |
def predict_en(text):
|
| 85 |
res = pipeline_en(text)[0]
|
| 86 |
return res['label'], res['score']
|
| 87 |
|
|
|
|
| 88 |
def remove_redundant_words(text):
|
| 89 |
doc = nlp(text)
|
| 90 |
meaningless_words = {"actually", "basically", "literally", "really", "very", "just"}
|
| 91 |
filtered_text = [token.text for token in doc if token.text.lower() not in meaningless_words]
|
| 92 |
return ' '.join(filtered_text)
|
| 93 |
|
|
|
|
| 94 |
def fix_punctuation_spacing(text):
|
|
|
|
| 95 |
words = text.split(' ')
|
| 96 |
cleaned_words = []
|
| 97 |
punctuation_marks = {',', '.', "'", '!', '?', ':'}
|
|
|
|
| 105 |
return ' '.join(cleaned_words).replace(' ,', ',').replace(' .', '.').replace(" '", "'") \
|
| 106 |
.replace(' !', '!').replace(' ?', '?').replace(' :', ':')
|
| 107 |
|
|
|
|
| 108 |
def fix_possessives(text):
|
| 109 |
text = re.sub(r'(\w)\s\'\s?s', r"\1's", text)
|
| 110 |
return text
|
| 111 |
|
|
|
|
| 112 |
def capitalize_sentences_and_nouns(text):
|
| 113 |
doc = nlp(text)
|
| 114 |
corrected_text = []
|
|
|
|
| 126 |
|
| 127 |
return ' '.join(corrected_text)
|
| 128 |
|
|
|
|
| 129 |
def force_first_letter_capital(text):
|
| 130 |
sentences = re.split(r'(?<=\w[.!?])\s+', text)
|
| 131 |
capitalized_sentences = []
|
|
|
|
| 139 |
|
| 140 |
return " ".join(capitalized_sentences)
|
| 141 |
|
|
|
|
| 142 |
def correct_tense_errors(text):
|
| 143 |
doc = nlp(text)
|
| 144 |
corrected_text = []
|
|
|
|
| 150 |
corrected_text.append(token.text)
|
| 151 |
return ' '.join(corrected_text)
|
| 152 |
|
|
|
|
| 153 |
def correct_article_errors(text):
|
| 154 |
doc = nlp(text)
|
| 155 |
corrected_text = []
|
|
|
|
| 166 |
corrected_text.append(token.text)
|
| 167 |
return ' '.join(corrected_text)
|
| 168 |
|
|
|
|
| 169 |
def ensure_subject_verb_agreement(text):
|
| 170 |
doc = nlp(text)
|
| 171 |
corrected_text = []
|
|
|
|
| 178 |
corrected_text.append(token.text)
|
| 179 |
return ' '.join(corrected_text)
|
| 180 |
|
|
|
|
| 181 |
def correct_spelling(text):
|
| 182 |
words = text.split()
|
| 183 |
corrected_words = []
|
|
|
|
| 189 |
corrected_words.append(word)
|
| 190 |
return ' '.join(corrected_words)
|
| 191 |
|
|
|
|
| 192 |
def paraphrase_and_correct(text):
|
| 193 |
+
paragraphs = text.split("\n\n") # Split by paragraphs
|
| 194 |
+
|
| 195 |
+
# Process each paragraph separately
|
| 196 |
+
processed_paragraphs = []
|
| 197 |
+
for paragraph in paragraphs:
|
| 198 |
+
cleaned_text = remove_redundant_words(paragraph)
|
| 199 |
+
plag_removed = plagiarism_removal(cleaned_text)
|
| 200 |
+
paraphrased_text = capitalize_sentences_and_nouns(plag_removed)
|
| 201 |
+
paraphrased_text = force_first_letter_capital(paraphrased_text)
|
| 202 |
+
paraphrased_text = correct_article_errors(paraphrased_text)
|
| 203 |
+
paraphrased_text = correct_tense_errors(paraphrased_text)
|
| 204 |
+
paraphrased_text = ensure_subject_verb_agreement(paraphrased_text)
|
| 205 |
+
paraphrased_text = fix_possessives(paraphrased_text)
|
| 206 |
+
paraphrased_text = correct_spelling(paraphrased_text)
|
| 207 |
+
paraphrased_text = fix_punctuation_spacing(paraphrased_text)
|
| 208 |
+
processed_paragraphs.append(paraphrased_text)
|
| 209 |
+
|
| 210 |
+
return "\n\n".join(processed_paragraphs) # Reassemble the text with paragraphs
|
| 211 |
|
| 212 |
# Gradio app setup
|
| 213 |
with gr.Blocks() as demo:
|
|
|
|
| 226 |
|
| 227 |
button2.click(fn=paraphrase_and_correct, inputs=t2, outputs=result2)
|
| 228 |
|
| 229 |
+
demo.launch(share=True)
|