Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,32 +1,11 @@
|
|
| 1 |
import os
|
| 2 |
-
import subprocess
|
| 3 |
-
import sys
|
| 4 |
import gradio as gr
|
| 5 |
from transformers import pipeline
|
| 6 |
import spacy
|
|
|
|
| 7 |
import nltk
|
| 8 |
from nltk.corpus import wordnet
|
| 9 |
-
|
| 10 |
-
# Function to install GECToR
|
| 11 |
-
def install_gector():
|
| 12 |
-
if not os.path.exists('gector'):
|
| 13 |
-
print("Cloning GECToR repository...")
|
| 14 |
-
subprocess.run(["git", "clone", "https://github.com/grammarly/gector.git"], check=True)
|
| 15 |
-
|
| 16 |
-
# Install dependencies from GECToR requirements
|
| 17 |
-
subprocess.run([sys.executable, "-m", "pip", "install", "-r", "gector/requirements.txt"], check=True)
|
| 18 |
-
|
| 19 |
-
# Manually add GECToR to the Python path
|
| 20 |
-
sys.path.append(os.path.abspath('gector'))
|
| 21 |
-
|
| 22 |
-
# Install and import GECToR
|
| 23 |
-
install_gector()
|
| 24 |
-
from gector.gec_model import GecBERTModel
|
| 25 |
-
|
| 26 |
-
# Initialize GECToR model for grammar correction
|
| 27 |
-
gector_model = GecBERTModel(vocab_path='gector/data/output_vocabulary',
|
| 28 |
-
model_paths=['https://grammarly-nlp-data.s3.amazonaws.com/gector/roberta_1_gector.th'],
|
| 29 |
-
is_ensemble=False)
|
| 30 |
|
| 31 |
# Initialize the English text classification pipeline for AI detection
|
| 32 |
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
|
|
@@ -47,14 +26,82 @@ except OSError:
|
|
| 47 |
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
|
| 48 |
nlp = spacy.load("en_core_web_sm")
|
| 49 |
|
| 50 |
-
#
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
# Gradio app setup with three tabs
|
| 60 |
with gr.Blocks() as demo:
|
|
@@ -73,15 +120,15 @@ with gr.Blocks() as demo:
|
|
| 73 |
output_text = gr.Textbox(label="Paraphrased Text")
|
| 74 |
|
| 75 |
# Connect the paraphrasing function to the button
|
| 76 |
-
paraphrase_button.click(
|
| 77 |
|
| 78 |
with gr.Tab("Grammar Correction"):
|
| 79 |
grammar_input = gr.Textbox(lines=5, label="Input Text")
|
| 80 |
grammar_button = gr.Button("Correct Grammar")
|
| 81 |
grammar_output = gr.Textbox(label="Corrected Text")
|
| 82 |
|
| 83 |
-
# Connect the
|
| 84 |
-
grammar_button.click(
|
| 85 |
|
| 86 |
# Launch the app with all functionalities
|
| 87 |
demo.launch()
|
|
|
|
| 1 |
import os
|
|
|
|
|
|
|
| 2 |
import gradio as gr
|
| 3 |
from transformers import pipeline
|
| 4 |
import spacy
|
| 5 |
+
import subprocess
|
| 6 |
import nltk
|
| 7 |
from nltk.corpus import wordnet
|
| 8 |
+
from gramformer import Gramformer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
# Initialize the English text classification pipeline for AI detection
|
| 11 |
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
|
|
|
|
| 26 |
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
|
| 27 |
nlp = spacy.load("en_core_web_sm")
|
| 28 |
|
| 29 |
+
# Initialize Gramformer for grammar correction
|
| 30 |
+
gf = Gramformer(models=1, use_gpu=False) # You can set use_gpu=True if running on a machine with a GPU
|
| 31 |
+
|
| 32 |
+
# Function to correct grammar using Gramformer
|
| 33 |
+
def correct_grammar(text):
|
| 34 |
+
corrections = gf.correct(text)
|
| 35 |
+
return ' '.join(corrections)
|
| 36 |
+
|
| 37 |
+
# Function to get synonyms using NLTK WordNet (Humanifier)
|
| 38 |
+
def get_synonyms_nltk(word, pos):
|
| 39 |
+
synsets = wordnet.synsets(word, pos=pos)
|
| 40 |
+
if synsets:
|
| 41 |
+
lemmas = synsets[0].lemmas()
|
| 42 |
+
return [lemma.name() for lemma in lemmas]
|
| 43 |
+
return []
|
| 44 |
+
|
| 45 |
+
# Function to capitalize the first letter of sentences and proper nouns (Humanifier)
|
| 46 |
+
def capitalize_sentences_and_nouns(text):
|
| 47 |
+
doc = nlp(text)
|
| 48 |
+
corrected_text = []
|
| 49 |
+
|
| 50 |
+
for sent in doc.sents:
|
| 51 |
+
sentence = []
|
| 52 |
+
for token in sent:
|
| 53 |
+
if token.i == sent.start: # First word of the sentence
|
| 54 |
+
sentence.append(token.text.capitalize())
|
| 55 |
+
elif token.pos_ == "PROPN": # Proper noun
|
| 56 |
+
sentence.append(token.text.capitalize())
|
| 57 |
+
else:
|
| 58 |
+
sentence.append(token.text)
|
| 59 |
+
corrected_text.append(' '.join(sentence))
|
| 60 |
+
|
| 61 |
+
return ' '.join(corrected_text)
|
| 62 |
+
|
| 63 |
+
# Paraphrasing function using SpaCy and NLTK (Humanifier)
|
| 64 |
+
def paraphrase_with_spacy_nltk(text):
|
| 65 |
+
doc = nlp(text)
|
| 66 |
+
paraphrased_words = []
|
| 67 |
+
|
| 68 |
+
for token in doc:
|
| 69 |
+
# Map SpaCy POS tags to WordNet POS tags
|
| 70 |
+
pos = None
|
| 71 |
+
if token.pos_ in {"NOUN"}:
|
| 72 |
+
pos = wordnet.NOUN
|
| 73 |
+
elif token.pos_ in {"VERB"}:
|
| 74 |
+
pos = wordnet.VERB
|
| 75 |
+
elif token.pos_ in {"ADJ"}:
|
| 76 |
+
pos = wordnet.ADJ
|
| 77 |
+
elif token.pos_ in {"ADV"}:
|
| 78 |
+
pos = wordnet.ADV
|
| 79 |
+
|
| 80 |
+
synonyms = get_synonyms_nltk(token.text.lower(), pos) if pos else []
|
| 81 |
+
|
| 82 |
+
# Replace with a synonym only if it makes sense
|
| 83 |
+
if synonyms and token.pos_ in {"NOUN", "VERB", "ADJ", "ADV"} and synonyms[0] != token.text.lower():
|
| 84 |
+
paraphrased_words.append(synonyms[0])
|
| 85 |
+
else:
|
| 86 |
+
paraphrased_words.append(token.text)
|
| 87 |
+
|
| 88 |
+
# Join the words back into a sentence
|
| 89 |
+
paraphrased_sentence = ' '.join(paraphrased_words)
|
| 90 |
+
|
| 91 |
+
# Capitalize sentences and proper nouns
|
| 92 |
+
corrected_text = capitalize_sentences_and_nouns(paraphrased_sentence)
|
| 93 |
+
|
| 94 |
+
return corrected_text
|
| 95 |
+
|
| 96 |
+
# Combined function: Paraphrase -> Capitalization (Humanifier)
|
| 97 |
+
def paraphrase_and_correct(text):
|
| 98 |
+
# Step 1: Paraphrase the text
|
| 99 |
+
paraphrased_text = paraphrase_with_spacy_nltk(text)
|
| 100 |
+
|
| 101 |
+
# Step 2: Capitalize sentences and proper nouns
|
| 102 |
+
final_text = capitalize_sentences_and_nouns(paraphrased_text)
|
| 103 |
+
|
| 104 |
+
return final_text
|
| 105 |
|
| 106 |
# Gradio app setup with three tabs
|
| 107 |
with gr.Blocks() as demo:
|
|
|
|
| 120 |
output_text = gr.Textbox(label="Paraphrased Text")
|
| 121 |
|
| 122 |
# Connect the paraphrasing function to the button
|
| 123 |
+
paraphrase_button.click(paraphrase_and_correct, inputs=text_input, outputs=output_text)
|
| 124 |
|
| 125 |
with gr.Tab("Grammar Correction"):
|
| 126 |
grammar_input = gr.Textbox(lines=5, label="Input Text")
|
| 127 |
grammar_button = gr.Button("Correct Grammar")
|
| 128 |
grammar_output = gr.Textbox(label="Corrected Text")
|
| 129 |
|
| 130 |
+
# Connect the grammar correction function to the button
|
| 131 |
+
grammar_button.click(correct_grammar, inputs=grammar_input, outputs=grammar_output)
|
| 132 |
|
| 133 |
# Launch the app with all functionalities
|
| 134 |
demo.launch()
|