Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -19,7 +19,6 @@ nltk.download('averaged_perceptron_tagger')
|
|
| 19 |
nltk.download('averaged_perceptron_tagger_eng')
|
| 20 |
nltk.download('wordnet')
|
| 21 |
nltk.download('omw-1.4')
|
| 22 |
-
nltk.download('punkt_tab')
|
| 23 |
|
| 24 |
# Initialize stopwords
|
| 25 |
stop_words = set(stopwords.words("english"))
|
|
@@ -41,11 +40,12 @@ except OSError:
|
|
| 41 |
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
|
| 42 |
nlp = spacy.load("en_core_web_sm")
|
| 43 |
|
|
|
|
| 44 |
def plagiarism_removal(text):
|
| 45 |
def plagiarism_remover(word):
|
| 46 |
if word.lower() in stop_words or word.lower() in exclude_words or word in string.punctuation:
|
| 47 |
return word
|
| 48 |
-
|
| 49 |
# Find synonyms
|
| 50 |
synonyms = set()
|
| 51 |
for syn in wordnet.synsets(word):
|
|
@@ -57,7 +57,7 @@ def plagiarism_removal(text):
|
|
| 57 |
|
| 58 |
if pos_tag_word[1] in exclude_tags:
|
| 59 |
return word
|
| 60 |
-
|
| 61 |
filtered_synonyms = [syn for syn in synonyms if nltk.pos_tag([syn])[0][1] == pos_tag_word[1]]
|
| 62 |
|
| 63 |
if not filtered_synonyms:
|
|
@@ -71,26 +71,29 @@ def plagiarism_removal(text):
|
|
| 71 |
|
| 72 |
para_split = word_tokenize(text)
|
| 73 |
final_text = [plagiarism_remover(word) for word in para_split]
|
| 74 |
-
|
| 75 |
corrected_text = []
|
| 76 |
for i in range(len(final_text)):
|
| 77 |
if final_text[i] in string.punctuation and i > 0:
|
| 78 |
-
corrected_text[-1] += final_text[i]
|
| 79 |
else:
|
| 80 |
corrected_text.append(final_text[i])
|
| 81 |
|
| 82 |
return " ".join(corrected_text)
|
| 83 |
|
|
|
|
| 84 |
def predict_en(text):
|
| 85 |
res = pipeline_en(text)[0]
|
| 86 |
return res['label'], res['score']
|
| 87 |
|
|
|
|
| 88 |
def remove_redundant_words(text):
|
| 89 |
doc = nlp(text)
|
| 90 |
meaningless_words = {"actually", "basically", "literally", "really", "very", "just"}
|
| 91 |
filtered_text = [token.text for token in doc if token.text.lower() not in meaningless_words]
|
| 92 |
return ' '.join(filtered_text)
|
| 93 |
|
|
|
|
| 94 |
def fix_punctuation_spacing(text):
|
| 95 |
words = text.split(' ')
|
| 96 |
cleaned_words = []
|
|
@@ -103,12 +106,14 @@ def fix_punctuation_spacing(text):
|
|
| 103 |
cleaned_words.append(word)
|
| 104 |
|
| 105 |
return ' '.join(cleaned_words).replace(' ,', ',').replace(' .', '.').replace(" '", "'") \
|
| 106 |
-
|
|
|
|
| 107 |
|
| 108 |
def fix_possessives(text):
|
| 109 |
text = re.sub(r'(\w)\s\'\s?s', r"\1's", text)
|
| 110 |
return text
|
| 111 |
|
|
|
|
| 112 |
def capitalize_sentences_and_nouns(text):
|
| 113 |
doc = nlp(text)
|
| 114 |
corrected_text = []
|
|
@@ -126,30 +131,41 @@ def capitalize_sentences_and_nouns(text):
|
|
| 126 |
|
| 127 |
return ' '.join(corrected_text)
|
| 128 |
|
|
|
|
| 129 |
def force_first_letter_capital(text):
|
| 130 |
sentences = re.split(r'(?<=\w[.!?])\s+', text)
|
| 131 |
capitalized_sentences = []
|
| 132 |
-
|
| 133 |
for sentence in sentences:
|
| 134 |
if sentence:
|
| 135 |
capitalized_sentence = sentence[0].capitalize() + sentence[1:]
|
| 136 |
if not re.search(r'[.!?]$', capitalized_sentence):
|
| 137 |
capitalized_sentence += '.'
|
| 138 |
capitalized_sentences.append(capitalized_sentence)
|
| 139 |
-
|
| 140 |
return " ".join(capitalized_sentences)
|
| 141 |
|
|
|
|
| 142 |
def correct_tense_errors(text):
|
| 143 |
doc = nlp(text)
|
| 144 |
corrected_text = []
|
| 145 |
for token in doc:
|
| 146 |
-
if token.pos_ == "VERB"
|
| 147 |
-
|
| 148 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 149 |
else:
|
| 150 |
corrected_text.append(token.text)
|
| 151 |
return ' '.join(corrected_text)
|
| 152 |
|
|
|
|
| 153 |
def correct_article_errors(text):
|
| 154 |
doc = nlp(text)
|
| 155 |
corrected_text = []
|
|
@@ -166,6 +182,7 @@ def correct_article_errors(text):
|
|
| 166 |
corrected_text.append(token.text)
|
| 167 |
return ' '.join(corrected_text)
|
| 168 |
|
|
|
|
| 169 |
def ensure_subject_verb_agreement(text):
|
| 170 |
doc = nlp(text)
|
| 171 |
corrected_text = []
|
|
@@ -178,6 +195,7 @@ def ensure_subject_verb_agreement(text):
|
|
| 178 |
corrected_text.append(token.text)
|
| 179 |
return ' '.join(corrected_text)
|
| 180 |
|
|
|
|
| 181 |
def correct_spelling(text):
|
| 182 |
words = text.split()
|
| 183 |
corrected_words = []
|
|
@@ -189,6 +207,7 @@ def correct_spelling(text):
|
|
| 189 |
corrected_words.append(word)
|
| 190 |
return ' '.join(corrected_words)
|
| 191 |
|
|
|
|
| 192 |
def paraphrase_and_correct(text):
|
| 193 |
paragraphs = text.split("\n\n") # Split by paragraphs
|
| 194 |
|
|
@@ -209,6 +228,7 @@ def paraphrase_and_correct(text):
|
|
| 209 |
|
| 210 |
return "\n\n".join(processed_paragraphs) # Reassemble the text with paragraphs
|
| 211 |
|
|
|
|
| 212 |
# Gradio app setup
|
| 213 |
with gr.Blocks() as demo:
|
| 214 |
with gr.Tab("AI Detection"):
|
|
|
|
| 19 |
nltk.download('averaged_perceptron_tagger_eng')
|
| 20 |
nltk.download('wordnet')
|
| 21 |
nltk.download('omw-1.4')
|
|
|
|
| 22 |
|
| 23 |
# Initialize stopwords
|
| 24 |
stop_words = set(stopwords.words("english"))
|
|
|
|
| 40 |
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
|
| 41 |
nlp = spacy.load("en_core_web_sm")
|
| 42 |
|
| 43 |
+
|
| 44 |
def plagiarism_removal(text):
|
| 45 |
def plagiarism_remover(word):
|
| 46 |
if word.lower() in stop_words or word.lower() in exclude_words or word in string.punctuation:
|
| 47 |
return word
|
| 48 |
+
|
| 49 |
# Find synonyms
|
| 50 |
synonyms = set()
|
| 51 |
for syn in wordnet.synsets(word):
|
|
|
|
| 57 |
|
| 58 |
if pos_tag_word[1] in exclude_tags:
|
| 59 |
return word
|
| 60 |
+
|
| 61 |
filtered_synonyms = [syn for syn in synonyms if nltk.pos_tag([syn])[0][1] == pos_tag_word[1]]
|
| 62 |
|
| 63 |
if not filtered_synonyms:
|
|
|
|
| 71 |
|
| 72 |
para_split = word_tokenize(text)
|
| 73 |
final_text = [plagiarism_remover(word) for word in para_split]
|
| 74 |
+
|
| 75 |
corrected_text = []
|
| 76 |
for i in range(len(final_text)):
|
| 77 |
if final_text[i] in string.punctuation and i > 0:
|
| 78 |
+
corrected_text[-1] += final_text[i]
|
| 79 |
else:
|
| 80 |
corrected_text.append(final_text[i])
|
| 81 |
|
| 82 |
return " ".join(corrected_text)
|
| 83 |
|
| 84 |
+
|
| 85 |
def predict_en(text):
|
| 86 |
res = pipeline_en(text)[0]
|
| 87 |
return res['label'], res['score']
|
| 88 |
|
| 89 |
+
|
| 90 |
def remove_redundant_words(text):
|
| 91 |
doc = nlp(text)
|
| 92 |
meaningless_words = {"actually", "basically", "literally", "really", "very", "just"}
|
| 93 |
filtered_text = [token.text for token in doc if token.text.lower() not in meaningless_words]
|
| 94 |
return ' '.join(filtered_text)
|
| 95 |
|
| 96 |
+
|
| 97 |
def fix_punctuation_spacing(text):
|
| 98 |
words = text.split(' ')
|
| 99 |
cleaned_words = []
|
|
|
|
| 106 |
cleaned_words.append(word)
|
| 107 |
|
| 108 |
return ' '.join(cleaned_words).replace(' ,', ',').replace(' .', '.').replace(" '", "'") \
|
| 109 |
+
.replace(' !', '!').replace(' ?', '?').replace(' :', ':')
|
| 110 |
+
|
| 111 |
|
| 112 |
def fix_possessives(text):
|
| 113 |
text = re.sub(r'(\w)\s\'\s?s', r"\1's", text)
|
| 114 |
return text
|
| 115 |
|
| 116 |
+
|
| 117 |
def capitalize_sentences_and_nouns(text):
|
| 118 |
doc = nlp(text)
|
| 119 |
corrected_text = []
|
|
|
|
| 131 |
|
| 132 |
return ' '.join(corrected_text)
|
| 133 |
|
| 134 |
+
|
| 135 |
def force_first_letter_capital(text):
|
| 136 |
sentences = re.split(r'(?<=\w[.!?])\s+', text)
|
| 137 |
capitalized_sentences = []
|
| 138 |
+
|
| 139 |
for sentence in sentences:
|
| 140 |
if sentence:
|
| 141 |
capitalized_sentence = sentence[0].capitalize() + sentence[1:]
|
| 142 |
if not re.search(r'[.!?]$', capitalized_sentence):
|
| 143 |
capitalized_sentence += '.'
|
| 144 |
capitalized_sentences.append(capitalized_sentence)
|
| 145 |
+
|
| 146 |
return " ".join(capitalized_sentences)
|
| 147 |
|
| 148 |
+
|
| 149 |
def correct_tense_errors(text):
|
| 150 |
doc = nlp(text)
|
| 151 |
corrected_text = []
|
| 152 |
for token in doc:
|
| 153 |
+
if token.pos_ == "VERB":
|
| 154 |
+
tense = token.morph.get("Tense")
|
| 155 |
+
if tense:
|
| 156 |
+
if 'Past' in tense:
|
| 157 |
+
corrected_text.append(token.lemma_ + "ed")
|
| 158 |
+
elif 'Present' in tense and token.tag_ == 'VBZ':
|
| 159 |
+
corrected_text.append(token.lemma_ + "s")
|
| 160 |
+
else:
|
| 161 |
+
corrected_text.append(token.lemma_)
|
| 162 |
+
else:
|
| 163 |
+
corrected_text.append(token.text)
|
| 164 |
else:
|
| 165 |
corrected_text.append(token.text)
|
| 166 |
return ' '.join(corrected_text)
|
| 167 |
|
| 168 |
+
|
| 169 |
def correct_article_errors(text):
|
| 170 |
doc = nlp(text)
|
| 171 |
corrected_text = []
|
|
|
|
| 182 |
corrected_text.append(token.text)
|
| 183 |
return ' '.join(corrected_text)
|
| 184 |
|
| 185 |
+
|
| 186 |
def ensure_subject_verb_agreement(text):
|
| 187 |
doc = nlp(text)
|
| 188 |
corrected_text = []
|
|
|
|
| 195 |
corrected_text.append(token.text)
|
| 196 |
return ' '.join(corrected_text)
|
| 197 |
|
| 198 |
+
|
| 199 |
def correct_spelling(text):
|
| 200 |
words = text.split()
|
| 201 |
corrected_words = []
|
|
|
|
| 207 |
corrected_words.append(word)
|
| 208 |
return ' '.join(corrected_words)
|
| 209 |
|
| 210 |
+
|
| 211 |
def paraphrase_and_correct(text):
|
| 212 |
paragraphs = text.split("\n\n") # Split by paragraphs
|
| 213 |
|
|
|
|
| 228 |
|
| 229 |
return "\n\n".join(processed_paragraphs) # Reassemble the text with paragraphs
|
| 230 |
|
| 231 |
+
|
| 232 |
# Gradio app setup
|
| 233 |
with gr.Blocks() as demo:
|
| 234 |
with gr.Tab("AI Detection"):
|