Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,66 +1,25 @@
|
|
| 1 |
-
|
| 2 |
-
import gradio as gr
|
| 3 |
-
from transformers import pipeline
|
| 4 |
-
import spacy
|
| 5 |
-
import nltk
|
| 6 |
-
from nltk.corpus import wordnet
|
| 7 |
-
from spellchecker import SpellChecker
|
| 8 |
-
import re
|
| 9 |
-
import inflect
|
| 10 |
-
|
| 11 |
-
# Initialize components
|
| 12 |
-
try:
|
| 13 |
-
nlp = spacy.load("en_core_web_sm")
|
| 14 |
-
except OSError:
|
| 15 |
-
print("Downloading spaCy model...")
|
| 16 |
-
spacy.cli.download("en_core_web_sm")
|
| 17 |
-
nlp = spacy.load("en_core_web_sm")
|
| 18 |
-
|
| 19 |
-
# Initialize the English text classification pipeline for AI detection
|
| 20 |
-
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
|
| 21 |
-
|
| 22 |
-
# Initialize the spell checker
|
| 23 |
-
spell = SpellChecker()
|
| 24 |
-
|
| 25 |
-
# Initialize the inflect engine for pluralization
|
| 26 |
-
inflect_engine = inflect.engine()
|
| 27 |
-
|
| 28 |
-
# Ensure necessary NLTK data is downloaded
|
| 29 |
-
nltk.download('wordnet', quiet=True)
|
| 30 |
-
nltk.download('omw-1.4', quiet=True)
|
| 31 |
-
|
| 32 |
-
def predict_en(text):
|
| 33 |
-
res = pipeline_en(text)[0]
|
| 34 |
-
return res['label'], res['score']
|
| 35 |
-
|
| 36 |
-
def get_synonyms_nltk(word, pos):
|
| 37 |
-
synsets = wordnet.synsets(word, pos=pos)
|
| 38 |
-
if synsets:
|
| 39 |
-
lemmas = synsets[0].lemmas()
|
| 40 |
-
return [lemma.name() for lemma in lemmas if lemma.name() != word]
|
| 41 |
-
return []
|
| 42 |
-
|
| 43 |
def remove_redundant_words(text):
|
| 44 |
doc = nlp(text)
|
| 45 |
-
meaningless_words = {"actually", "basically", "literally", "really", "very", "just"}
|
| 46 |
filtered_text = [token.text for token in doc if token.text.lower() not in meaningless_words]
|
| 47 |
return ' '.join(filtered_text)
|
| 48 |
|
|
|
|
| 49 |
def capitalize_sentences_and_nouns(text):
|
| 50 |
doc = nlp(text)
|
| 51 |
corrected_text = []
|
| 52 |
-
|
| 53 |
for sent in doc.sents:
|
| 54 |
sentence = []
|
| 55 |
for token in sent:
|
| 56 |
if token.i == sent.start or token.pos_ == "PROPN":
|
| 57 |
sentence.append(token.text.capitalize())
|
| 58 |
else:
|
| 59 |
-
sentence.append(token.text)
|
| 60 |
corrected_text.append(' '.join(sentence))
|
| 61 |
-
|
| 62 |
return ' '.join(corrected_text)
|
| 63 |
|
|
|
|
| 64 |
def correct_tense_errors(text):
|
| 65 |
doc = nlp(text)
|
| 66 |
corrected_text = []
|
|
@@ -72,47 +31,7 @@ def correct_tense_errors(text):
|
|
| 72 |
corrected_text.append(token.text)
|
| 73 |
return ' '.join(corrected_text)
|
| 74 |
|
| 75 |
-
|
| 76 |
-
doc = nlp(text)
|
| 77 |
-
corrected_text = []
|
| 78 |
-
|
| 79 |
-
for token in doc:
|
| 80 |
-
if token.pos_ == "NOUN":
|
| 81 |
-
if token.tag_ == "NN" and any(child.text.lower() in ['many', 'several', 'few'] for child in token.head.children):
|
| 82 |
-
corrected_text.append(inflect_engine.plural(token.lemma_))
|
| 83 |
-
elif token.tag_ == "NNS" and any(child.text.lower() in ['a', 'one'] for child in token.head.children):
|
| 84 |
-
corrected_text.append(inflect_engine.singular_noun(token.text) or token.text)
|
| 85 |
-
else:
|
| 86 |
-
corrected_text.append(token.text)
|
| 87 |
-
else:
|
| 88 |
-
corrected_text.append(token.text)
|
| 89 |
-
|
| 90 |
-
return ' '.join(corrected_text)
|
| 91 |
-
|
| 92 |
-
def correct_article_errors(text):
|
| 93 |
-
doc = nlp(text)
|
| 94 |
-
corrected_text = []
|
| 95 |
-
for i, token in enumerate(doc):
|
| 96 |
-
if token.text.lower() in ['a', 'an']:
|
| 97 |
-
next_token = doc[i + 1] if i + 1 < len(doc) else None
|
| 98 |
-
if next_token and next_token.text[0].lower() in "aeiou":
|
| 99 |
-
corrected_text.append("an")
|
| 100 |
-
else:
|
| 101 |
-
corrected_text.append("a")
|
| 102 |
-
else:
|
| 103 |
-
corrected_text.append(token.text)
|
| 104 |
-
return ' '.join(corrected_text)
|
| 105 |
-
|
| 106 |
-
def correct_double_negatives(text):
|
| 107 |
-
doc = nlp(text)
|
| 108 |
-
corrected_text = []
|
| 109 |
-
for token in doc:
|
| 110 |
-
if token.dep_ == "neg" and any(child.dep_ == "neg" for child in token.head.children):
|
| 111 |
-
continue
|
| 112 |
-
else:
|
| 113 |
-
corrected_text.append(token.text)
|
| 114 |
-
return ' '.join(corrected_text)
|
| 115 |
-
|
| 116 |
def ensure_subject_verb_agreement(text):
|
| 117 |
doc = nlp(text)
|
| 118 |
corrected_text = []
|
|
@@ -128,119 +47,28 @@ def ensure_subject_verb_agreement(text):
|
|
| 128 |
corrected_text.append(token.text)
|
| 129 |
return ' '.join(corrected_text)
|
| 130 |
|
| 131 |
-
|
| 132 |
-
words = text.split()
|
| 133 |
-
corrected_words = []
|
| 134 |
-
for word in words:
|
| 135 |
-
if '_' in word:
|
| 136 |
-
sub_words = word.split('_')
|
| 137 |
-
corrected_sub_words = [spell.correction(w) or w for w in sub_words]
|
| 138 |
-
corrected_words.append('_'.join(corrected_sub_words))
|
| 139 |
-
else:
|
| 140 |
-
corrected_word = spell.correction(word) or word
|
| 141 |
-
corrected_words.append(corrected_word)
|
| 142 |
-
return ' '.join(corrected_words)
|
| 143 |
-
|
| 144 |
-
def correct_semantic_errors(text):
|
| 145 |
-
semantic_corrections = {
|
| 146 |
-
"animate_being": "animal",
|
| 147 |
-
"little": "smallest",
|
| 148 |
-
"big": "largest",
|
| 149 |
-
"mammalian": "mammals",
|
| 150 |
-
"universe": "world",
|
| 151 |
-
"manner": "ways",
|
| 152 |
-
"continue": "preserve",
|
| 153 |
-
"dirt": "soil",
|
| 154 |
-
"wellness": "health",
|
| 155 |
-
"modulate": "regulate",
|
| 156 |
-
"clime": "climate",
|
| 157 |
-
"function": "role",
|
| 158 |
-
"keeping": "maintaining",
|
| 159 |
-
"lend": "contribute",
|
| 160 |
-
"better": "improve",
|
| 161 |
-
"cardinal": "key",
|
| 162 |
-
"expeditiously": "efficiently",
|
| 163 |
-
"marauder": "predator",
|
| 164 |
-
"quarry": "prey",
|
| 165 |
-
"forestalling": "preventing",
|
| 166 |
-
"bend": "turn",
|
| 167 |
-
"works": "plant",
|
| 168 |
-
"croping": "grazing",
|
| 169 |
-
"flora": "vegetation",
|
| 170 |
-
"dynamical": "dynamic",
|
| 171 |
-
"alteration": "change",
|
| 172 |
-
"add-on": "addition",
|
| 173 |
-
"indispensable": "essential",
|
| 174 |
-
"nutrient": "food",
|
| 175 |
-
"harvest": "crops",
|
| 176 |
-
"pollenateing": "pollinating",
|
| 177 |
-
"divers": "diverse",
|
| 178 |
-
"beginning": "source",
|
| 179 |
-
"homo": "humans",
|
| 180 |
-
"fall_in": "collapse",
|
| 181 |
-
"takeing": "leading",
|
| 182 |
-
"coinage": "species",
|
| 183 |
-
"trust": "rely",
|
| 184 |
-
"angleworm": "earthworm",
|
| 185 |
-
"interrupt": "break",
|
| 186 |
-
"affair": "matter",
|
| 187 |
-
"air_out": "aerate",
|
| 188 |
-
"alimentary": "nutrient",
|
| 189 |
-
"distributeed": "spread",
|
| 190 |
-
"country": "areas",
|
| 191 |
-
"reconstruct": "restore",
|
| 192 |
-
"debauched": "degraded",
|
| 193 |
-
"giant": "whales",
|
| 194 |
-
"organic_structure": "bodies",
|
| 195 |
-
"decease": "die",
|
| 196 |
-
"carcase": "carcasses",
|
| 197 |
-
"pin_downing": "trapping",
|
| 198 |
-
"cut_downs": "reduces",
|
| 199 |
-
"ambiance": "atmosphere",
|
| 200 |
-
"extenuateing": "mitigating",
|
| 201 |
-
"decision": "conclusion",
|
| 202 |
-
"doing": "making",
|
| 203 |
-
"prolongs": "sustains",
|
| 204 |
-
"home_ground": "habitats",
|
| 205 |
-
"continueing": "preserving",
|
| 206 |
-
"populateing": "living",
|
| 207 |
-
"beingness": "beings"
|
| 208 |
-
}
|
| 209 |
-
|
| 210 |
-
words = text.split()
|
| 211 |
-
corrected_words = [semantic_corrections.get(word.lower(), word) for word in words]
|
| 212 |
-
return ' '.join(corrected_words)
|
| 213 |
-
|
| 214 |
-
def enhance_punctuation(text):
|
| 215 |
-
text = re.sub(r'\s+([?.!,";:])', r'\1', text)
|
| 216 |
-
text = re.sub(r'([?.!,";:])(\S)', r'\1 \2', text)
|
| 217 |
-
text = re.sub(r'\s*"\s*', '" ', text).strip()
|
| 218 |
-
text = re.sub(r'([.!?])\s*([a-z])', lambda m: m.group(1) + ' ' + m.group(2).upper(), text)
|
| 219 |
-
text = re.sub(r'([a-z])\s+([A-Z])', r'\1. \2', text)
|
| 220 |
-
return text
|
| 221 |
-
|
| 222 |
def correct_apostrophes(text):
|
| 223 |
-
text = re.sub(r"\b(\w+)s\b(?<!\'s)", r"\1's", text)
|
| 224 |
-
text = re.sub(r"\b(\w+)s'\b", r"\1s'", text)
|
| 225 |
return text
|
| 226 |
|
| 227 |
-
|
| 228 |
-
|
|
|
|
|
|
|
| 229 |
return text
|
| 230 |
|
|
|
|
| 231 |
def rephrase_with_synonyms(text):
|
| 232 |
doc = nlp(text)
|
| 233 |
rephrased_text = []
|
| 234 |
|
| 235 |
for token in doc:
|
| 236 |
-
if token.text.lower() == "earth":
|
| 237 |
-
rephrased_text.append("Earth")
|
| 238 |
-
continue
|
| 239 |
-
|
| 240 |
pos_tag = None
|
| 241 |
if token.pos_ in ["NOUN", "VERB", "ADJ", "ADV"]:
|
| 242 |
pos_tag = getattr(wordnet, token.pos_)
|
| 243 |
-
|
| 244 |
if pos_tag:
|
| 245 |
synonyms = get_synonyms_nltk(token.lemma_, pos_tag)
|
| 246 |
if synonyms:
|
|
@@ -260,9 +88,9 @@ def rephrase_with_synonyms(text):
|
|
| 260 |
|
| 261 |
return ' '.join(rephrased_text)
|
| 262 |
|
|
|
|
| 263 |
def paraphrase_and_correct(text):
|
| 264 |
text = enhanced_spell_check(text)
|
| 265 |
-
text = correct_semantic_errors(text)
|
| 266 |
text = remove_redundant_words(text)
|
| 267 |
text = capitalize_sentences_and_nouns(text)
|
| 268 |
text = correct_tense_errors(text)
|
|
@@ -270,32 +98,22 @@ def paraphrase_and_correct(text):
|
|
| 270 |
text = correct_article_errors(text)
|
| 271 |
text = enhance_punctuation(text)
|
| 272 |
text = correct_apostrophes(text)
|
| 273 |
-
text = handle_possessives(text)
|
| 274 |
text = rephrase_with_synonyms(text)
|
| 275 |
text = correct_double_negatives(text)
|
| 276 |
text = ensure_subject_verb_agreement(text)
|
| 277 |
-
text = ' '.join(word.capitalize() if word.lower() in ['i', 'earth'] else word for word in text.split())
|
| 278 |
return text
|
| 279 |
|
| 280 |
-
|
| 281 |
-
label, score = predict_en(text)
|
| 282 |
-
return label, score
|
| 283 |
-
|
| 284 |
def gradio_interface(text):
|
| 285 |
-
label, score = detect_ai(text)
|
| 286 |
corrected_text = paraphrase_and_correct(text)
|
| 287 |
-
return
|
| 288 |
|
| 289 |
iface = gr.Interface(
|
| 290 |
fn=gradio_interface,
|
| 291 |
inputs=gr.Textbox(lines=5, placeholder="Enter text here..."),
|
| 292 |
-
outputs=[
|
| 293 |
-
|
| 294 |
-
gr.Textbox(label="Corrected Text")
|
| 295 |
-
],
|
| 296 |
-
title="AI Detection and Grammar Correction",
|
| 297 |
-
description="Detect AI-generated content and correct grammar issues."
|
| 298 |
)
|
| 299 |
|
| 300 |
if __name__ == "__main__":
|
| 301 |
-
iface.launch()
|
|
|
|
| 1 |
+
# Added more redundant/filler words
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
def remove_redundant_words(text):
|
| 3 |
doc = nlp(text)
|
| 4 |
+
meaningless_words = {"actually", "basically", "literally", "really", "very", "just", "quite", "rather", "simply", "that", "kind of", "sort of", "you know", "honestly", "seriously"}
|
| 5 |
filtered_text = [token.text for token in doc if token.text.lower() not in meaningless_words]
|
| 6 |
return ' '.join(filtered_text)
|
| 7 |
|
| 8 |
+
# Capitalize sentences and proper nouns
|
| 9 |
def capitalize_sentences_and_nouns(text):
|
| 10 |
doc = nlp(text)
|
| 11 |
corrected_text = []
|
|
|
|
| 12 |
for sent in doc.sents:
|
| 13 |
sentence = []
|
| 14 |
for token in sent:
|
| 15 |
if token.i == sent.start or token.pos_ == "PROPN":
|
| 16 |
sentence.append(token.text.capitalize())
|
| 17 |
else:
|
| 18 |
+
sentence.append(token.text.lower())
|
| 19 |
corrected_text.append(' '.join(sentence))
|
|
|
|
| 20 |
return ' '.join(corrected_text)
|
| 21 |
|
| 22 |
+
# Function to dynamically correct tenses and verb forms
|
| 23 |
def correct_tense_errors(text):
|
| 24 |
doc = nlp(text)
|
| 25 |
corrected_text = []
|
|
|
|
| 31 |
corrected_text.append(token.text)
|
| 32 |
return ' '.join(corrected_text)
|
| 33 |
|
| 34 |
+
# Enhanced function to handle subject-verb agreement
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
def ensure_subject_verb_agreement(text):
|
| 36 |
doc = nlp(text)
|
| 37 |
corrected_text = []
|
|
|
|
| 47 |
corrected_text.append(token.text)
|
| 48 |
return ' '.join(corrected_text)
|
| 49 |
|
| 50 |
+
# Ensure proper apostrophe usage and possessives
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
def correct_apostrophes(text):
|
| 52 |
+
text = re.sub(r"\b(\w+)s\b(?<!\'s)", r"\1's", text) # Simple apostrophe correction
|
| 53 |
+
text = re.sub(r"\b(\w+)s'\b", r"\1s'", text) # Handles plural possessives
|
| 54 |
return text
|
| 55 |
|
| 56 |
+
# Enhanced punctuation
|
| 57 |
+
def enhance_punctuation(text):
|
| 58 |
+
text = re.sub(r'\s+([?.!,";:])', r'\1', text) # Remove extra space before punctuation
|
| 59 |
+
text = re.sub(r'([?.!,";:])(\S)', r'\1 \2', text) # Add space after punctuation if needed
|
| 60 |
return text
|
| 61 |
|
| 62 |
+
# Paraphrasing using synonyms and correcting semantic errors
|
| 63 |
def rephrase_with_synonyms(text):
|
| 64 |
doc = nlp(text)
|
| 65 |
rephrased_text = []
|
| 66 |
|
| 67 |
for token in doc:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
pos_tag = None
|
| 69 |
if token.pos_ in ["NOUN", "VERB", "ADJ", "ADV"]:
|
| 70 |
pos_tag = getattr(wordnet, token.pos_)
|
| 71 |
+
|
| 72 |
if pos_tag:
|
| 73 |
synonyms = get_synonyms_nltk(token.lemma_, pos_tag)
|
| 74 |
if synonyms:
|
|
|
|
| 88 |
|
| 89 |
return ' '.join(rephrased_text)
|
| 90 |
|
| 91 |
+
# Comprehensive text correction
|
| 92 |
def paraphrase_and_correct(text):
|
| 93 |
text = enhanced_spell_check(text)
|
|
|
|
| 94 |
text = remove_redundant_words(text)
|
| 95 |
text = capitalize_sentences_and_nouns(text)
|
| 96 |
text = correct_tense_errors(text)
|
|
|
|
| 98 |
text = correct_article_errors(text)
|
| 99 |
text = enhance_punctuation(text)
|
| 100 |
text = correct_apostrophes(text)
|
|
|
|
| 101 |
text = rephrase_with_synonyms(text)
|
| 102 |
text = correct_double_negatives(text)
|
| 103 |
text = ensure_subject_verb_agreement(text)
|
|
|
|
| 104 |
return text
|
| 105 |
|
| 106 |
+
# Integrate with Gradio UI
|
|
|
|
|
|
|
|
|
|
| 107 |
def gradio_interface(text):
|
|
|
|
| 108 |
corrected_text = paraphrase_and_correct(text)
|
| 109 |
+
return corrected_text
|
| 110 |
|
| 111 |
iface = gr.Interface(
|
| 112 |
fn=gradio_interface,
|
| 113 |
inputs=gr.Textbox(lines=5, placeholder="Enter text here..."),
|
| 114 |
+
outputs=[gr.Textbox(label="Corrected Text")],
|
| 115 |
+
title="Grammar & Semantic Error Correction",
|
|
|
|
|
|
|
|
|
|
|
|
|
| 116 |
)
|
| 117 |
|
| 118 |
if __name__ == "__main__":
|
| 119 |
+
iface.launch()
|