Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,18 +3,14 @@ import gradio as gr
|
|
| 3 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, T5Tokenizer, T5ForConditionalGeneration
|
| 4 |
import torch
|
| 5 |
import nltk
|
| 6 |
-
import random
|
| 7 |
-
import string
|
| 8 |
import spacy
|
| 9 |
-
|
|
|
|
| 10 |
|
| 11 |
-
#
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
nltk.download('wordnet', quiet=True)
|
| 16 |
-
except Exception as e:
|
| 17 |
-
print(f"Error downloading NLTK data: {e}")
|
| 18 |
|
| 19 |
# Download spaCy model if not already installed
|
| 20 |
try:
|
|
@@ -34,97 +30,39 @@ model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-unca
|
|
| 34 |
paraphrase_tokenizer = T5Tokenizer.from_pretrained("SRDdev/Paraphrase")
|
| 35 |
paraphrase_model = T5ForConditionalGeneration.from_pretrained("SRDdev/Paraphrase").to(device)
|
| 36 |
|
| 37 |
-
#
|
| 38 |
-
def
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
return
|
| 44 |
|
| 45 |
-
#
|
| 46 |
-
def replace_with_synonyms(text
|
| 47 |
doc = nlp(text)
|
| 48 |
-
|
| 49 |
for token in doc:
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
new_text.append(token.text)
|
| 57 |
else:
|
| 58 |
-
|
| 59 |
-
return " ".join(
|
| 60 |
-
|
| 61 |
-
# Random text transformations to simulate human-like errors
|
| 62 |
-
def random_capitalize(word):
|
| 63 |
-
if word.isalpha() and random.random() < 0.1:
|
| 64 |
-
return word.capitalize()
|
| 65 |
-
return word
|
| 66 |
-
|
| 67 |
-
def random_remove_punctuation(text):
|
| 68 |
-
if random.random() < 0.2:
|
| 69 |
-
text = list(text)
|
| 70 |
-
indices = [i for i, c in enumerate(text) if c in string.punctuation]
|
| 71 |
-
if indices:
|
| 72 |
-
remove_indices = random.sample(indices, min(3, len(indices)))
|
| 73 |
-
for idx in sorted(remove_indices, reverse=True):
|
| 74 |
-
text.pop(idx)
|
| 75 |
-
return ''.join(text)
|
| 76 |
-
return text
|
| 77 |
-
|
| 78 |
-
def random_double_period(text):
|
| 79 |
-
if random.random() < 0.2:
|
| 80 |
-
text = text.replace('.', '..', 3)
|
| 81 |
-
return text
|
| 82 |
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
return
|
| 91 |
-
|
| 92 |
-
def random_replace_comma_space(text, period_replace_percentage=0.33):
|
| 93 |
-
comma_occurrences = text.count(", ")
|
| 94 |
-
period_occurrences = text.count(". ")
|
| 95 |
-
replace_count_comma = max(1, comma_occurrences // 3)
|
| 96 |
-
replace_count_period = max(1, period_occurrences // 3)
|
| 97 |
-
comma_indices = [i for i in range(len(text)) if text.startswith(", ", i)]
|
| 98 |
-
period_indices = [i for i in range(len(text)) if text.startswith(". ", i)]
|
| 99 |
-
replace_indices_comma = random.sample(comma_indices, min(replace_count_comma, len(comma_indices)))
|
| 100 |
-
replace_indices_period = random.sample(period_indices, min(replace_count_period, len(period_indices)))
|
| 101 |
-
for idx in sorted(replace_indices_comma + replace_indices_period, reverse=True):
|
| 102 |
-
if text.startswith(", ", idx):
|
| 103 |
-
text = text[:idx] + " ," + text[idx + 2:]
|
| 104 |
-
if text.startswith(". ", idx):
|
| 105 |
-
text = text[:idx] + " ." + text[idx + 2:]
|
| 106 |
-
return text
|
| 107 |
-
|
| 108 |
-
def transform_paragraph(paragraph):
|
| 109 |
-
words = paragraph.split()
|
| 110 |
-
if len(words) > 12:
|
| 111 |
-
words = [random_capitalize(word) for word in words]
|
| 112 |
-
transformed_paragraph = ' '.join(words)
|
| 113 |
-
transformed_paragraph = random_remove_punctuation(transformed_paragraph)
|
| 114 |
-
transformed_paragraph = random_double_period(transformed_paragraph)
|
| 115 |
-
transformed_paragraph = random_double_space(transformed_paragraph)
|
| 116 |
-
transformed_paragraph = random_replace_comma_space(transformed_paragraph)
|
| 117 |
-
transformed_paragraph = replace_with_synonyms(transformed_paragraph) # Use spaCy for synonyms
|
| 118 |
-
else:
|
| 119 |
-
transformed_paragraph = paragraph
|
| 120 |
-
return transformed_paragraph
|
| 121 |
-
|
| 122 |
-
def transform_text(text):
|
| 123 |
-
paragraphs = text.split('\n')
|
| 124 |
-
transformed_paragraphs = [transform_paragraph(paragraph) for paragraph in paragraphs]
|
| 125 |
-
return '\n'.join(transformed_paragraphs)
|
| 126 |
|
| 127 |
-
# Humanize the AI-detected text using the SRDdev Paraphrase model
|
| 128 |
def humanize_text(AI_text):
|
| 129 |
paragraphs = AI_text.split("\n")
|
| 130 |
paraphrased_paragraphs = []
|
|
@@ -133,38 +71,36 @@ def humanize_text(AI_text):
|
|
| 133 |
inputs = paraphrase_tokenizer(paragraph, return_tensors="pt", max_length=512, truncation=True).to(device)
|
| 134 |
paraphrased_ids = paraphrase_model.generate(
|
| 135 |
inputs['input_ids'],
|
| 136 |
-
max_length=inputs['input_ids'].shape[-1] + 20,
|
| 137 |
-
num_beams=
|
| 138 |
early_stopping=True,
|
| 139 |
-
length_penalty=0
|
| 140 |
-
no_repeat_ngram_size=
|
| 141 |
-
do_sample=True, # Enable sampling to add randomness
|
| 142 |
-
top_k=50, # Top-k sampling
|
| 143 |
-
top_p=0.95, # Top-p (nucleus) sampling
|
| 144 |
)
|
| 145 |
paraphrased_text = paraphrase_tokenizer.decode(paraphrased_ids[0], skip_special_tokens=True)
|
| 146 |
paraphrased_paragraphs.append(paraphrased_text)
|
| 147 |
return "\n\n".join(paraphrased_paragraphs)
|
| 148 |
|
| 149 |
-
# Main function to handle the overall process
|
| 150 |
def main_function(AI_text):
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
|
|
|
|
|
|
| 154 |
|
| 155 |
-
#
|
| 156 |
-
humanized_text = humanize_text(
|
| 157 |
-
humanized_text = transform_text(humanized_text) # Add randomness to simulate human errors
|
| 158 |
|
| 159 |
-
return f"AI-Generated Content: {
|
| 160 |
|
| 161 |
# Gradio interface definition
|
| 162 |
interface = gr.Interface(
|
| 163 |
fn=main_function,
|
| 164 |
inputs="textbox",
|
| 165 |
outputs="textbox",
|
| 166 |
-
title="AI Text Humanizer",
|
| 167 |
-
description="Enter AI-generated text and get a human-written version. This space uses models from Hugging Face directly."
|
| 168 |
)
|
| 169 |
|
| 170 |
# Launch the Gradio app
|
|
|
|
| 3 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, T5Tokenizer, T5ForConditionalGeneration
|
| 4 |
import torch
|
| 5 |
import nltk
|
|
|
|
|
|
|
| 6 |
import spacy
|
| 7 |
+
from nltk.corpus import wordnet
|
| 8 |
+
import subprocess
|
| 9 |
|
| 10 |
+
# Download NLTK data (if not already downloaded)
|
| 11 |
+
nltk.download('punkt')
|
| 12 |
+
nltk.download('stopwords')
|
| 13 |
+
nltk.download('wordnet') # Download WordNet
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
# Download spaCy model if not already installed
|
| 16 |
try:
|
|
|
|
| 30 |
paraphrase_tokenizer = T5Tokenizer.from_pretrained("SRDdev/Paraphrase")
|
| 31 |
paraphrase_model = T5ForConditionalGeneration.from_pretrained("SRDdev/Paraphrase").to(device)
|
| 32 |
|
| 33 |
+
# Function to find synonyms using WordNet via NLTK
|
| 34 |
+
def get_synonyms(word):
|
| 35 |
+
synonyms = set()
|
| 36 |
+
for syn in wordnet.synsets(word):
|
| 37 |
+
for lemma in syn.lemmas():
|
| 38 |
+
synonyms.add(lemma.name())
|
| 39 |
+
return list(synonyms)
|
| 40 |
|
| 41 |
+
# Replace words with synonyms using spaCy and WordNet
|
| 42 |
+
def replace_with_synonyms(text):
|
| 43 |
doc = nlp(text)
|
| 44 |
+
processed_text = []
|
| 45 |
for token in doc:
|
| 46 |
+
synonyms = get_synonyms(token.text.lower())
|
| 47 |
+
if synonyms and token.pos_ in {"NOUN", "VERB", "ADJ", "ADV"}: # Only replace certain types of words
|
| 48 |
+
replacement = synonyms[0] # Replace with the first synonym
|
| 49 |
+
if token.is_title:
|
| 50 |
+
replacement = replacement.capitalize()
|
| 51 |
+
processed_text.append(replacement)
|
|
|
|
| 52 |
else:
|
| 53 |
+
processed_text.append(token.text)
|
| 54 |
+
return " ".join(processed_text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
+
# AI detection function using DistilBERT
|
| 57 |
+
def detect_ai_generated(text):
|
| 58 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512).to(device)
|
| 59 |
+
with torch.no_grad():
|
| 60 |
+
outputs = model(**inputs)
|
| 61 |
+
probabilities = torch.softmax(outputs.logits, dim=1)
|
| 62 |
+
ai_probability = probabilities[0][1].item() # Probability of being AI-generated
|
| 63 |
+
return ai_probability
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
|
| 65 |
+
# Humanize the AI-detected text using the SRDdev Paraphrase model
|
| 66 |
def humanize_text(AI_text):
|
| 67 |
paragraphs = AI_text.split("\n")
|
| 68 |
paraphrased_paragraphs = []
|
|
|
|
| 71 |
inputs = paraphrase_tokenizer(paragraph, return_tensors="pt", max_length=512, truncation=True).to(device)
|
| 72 |
paraphrased_ids = paraphrase_model.generate(
|
| 73 |
inputs['input_ids'],
|
| 74 |
+
max_length=inputs['input_ids'].shape[-1] + 20, # Slightly more than the original input length
|
| 75 |
+
num_beams=4,
|
| 76 |
early_stopping=True,
|
| 77 |
+
length_penalty=1.0,
|
| 78 |
+
no_repeat_ngram_size=3,
|
|
|
|
|
|
|
|
|
|
| 79 |
)
|
| 80 |
paraphrased_text = paraphrase_tokenizer.decode(paraphrased_ids[0], skip_special_tokens=True)
|
| 81 |
paraphrased_paragraphs.append(paraphrased_text)
|
| 82 |
return "\n\n".join(paraphrased_paragraphs)
|
| 83 |
|
| 84 |
+
# Main function to handle the overall process
|
| 85 |
def main_function(AI_text):
|
| 86 |
+
# Replace words with synonyms
|
| 87 |
+
text_with_synonyms = replace_with_synonyms(AI_text)
|
| 88 |
+
|
| 89 |
+
# Detect AI-generated content
|
| 90 |
+
ai_probability = detect_ai_generated(text_with_synonyms)
|
| 91 |
|
| 92 |
+
# Humanize AI text
|
| 93 |
+
humanized_text = humanize_text(text_with_synonyms)
|
|
|
|
| 94 |
|
| 95 |
+
return f"AI-Generated Content: {ai_probability:.2f}%\n\nHumanized Text:\n{humanized_text}"
|
| 96 |
|
| 97 |
# Gradio interface definition
|
| 98 |
interface = gr.Interface(
|
| 99 |
fn=main_function,
|
| 100 |
inputs="textbox",
|
| 101 |
outputs="textbox",
|
| 102 |
+
title="AI Text Humanizer with Synonym Replacement",
|
| 103 |
+
description="Enter AI-generated text and get a human-written version, with synonyms replaced for more natural output. This space uses models from Hugging Face directly."
|
| 104 |
)
|
| 105 |
|
| 106 |
# Launch the Gradio app
|