Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,7 +3,6 @@ import gradio as gr
|
|
| 3 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, T5Tokenizer, T5ForConditionalGeneration
|
| 4 |
import torch
|
| 5 |
import nltk
|
| 6 |
-
import spacy
|
| 7 |
from nltk.corpus import wordnet
|
| 8 |
import subprocess
|
| 9 |
|
|
@@ -12,13 +11,6 @@ nltk.download('punkt')
|
|
| 12 |
nltk.download('stopwords')
|
| 13 |
nltk.download('wordnet') # Download WordNet
|
| 14 |
|
| 15 |
-
# Download spaCy model if not already installed
|
| 16 |
-
try:
|
| 17 |
-
nlp = spacy.load("en_core_web_sm")
|
| 18 |
-
except OSError:
|
| 19 |
-
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
|
| 20 |
-
nlp = spacy.load("en_core_web_sm")
|
| 21 |
-
|
| 22 |
# Check for GPU and set the device accordingly
|
| 23 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 24 |
|
|
@@ -26,32 +18,9 @@ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
| 26 |
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english")
|
| 27 |
model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english").to(device)
|
| 28 |
|
| 29 |
-
# Load
|
| 30 |
-
paraphrase_tokenizer = T5Tokenizer.from_pretrained("
|
| 31 |
-
paraphrase_model = T5ForConditionalGeneration.from_pretrained("
|
| 32 |
-
|
| 33 |
-
# Function to find synonyms using WordNet via NLTK
|
| 34 |
-
def get_synonyms(word):
|
| 35 |
-
synonyms = set()
|
| 36 |
-
for syn in wordnet.synsets(word):
|
| 37 |
-
for lemma in syn.lemmas():
|
| 38 |
-
synonyms.add(lemma.name())
|
| 39 |
-
return list(synonyms)
|
| 40 |
-
|
| 41 |
-
# Replace words with synonyms using spaCy and WordNet
|
| 42 |
-
def replace_with_synonyms(text):
|
| 43 |
-
doc = nlp(text)
|
| 44 |
-
processed_text = []
|
| 45 |
-
for token in doc:
|
| 46 |
-
synonyms = get_synonyms(token.text.lower())
|
| 47 |
-
if synonyms and token.pos_ in {"NOUN", "VERB", "ADJ", "ADV"}: # Only replace certain types of words
|
| 48 |
-
replacement = synonyms[0] # Replace with the first synonym
|
| 49 |
-
if token.is_title:
|
| 50 |
-
replacement = replacement.capitalize()
|
| 51 |
-
processed_text.append(replacement)
|
| 52 |
-
else:
|
| 53 |
-
processed_text.append(token.text)
|
| 54 |
-
return " ".join(processed_text)
|
| 55 |
|
| 56 |
# AI detection function using DistilBERT
|
| 57 |
def detect_ai_generated(text):
|
|
@@ -59,49 +28,46 @@ def detect_ai_generated(text):
|
|
| 59 |
with torch.no_grad():
|
| 60 |
outputs = model(**inputs)
|
| 61 |
probabilities = torch.softmax(outputs.logits, dim=1)
|
| 62 |
-
|
|
|
|
| 63 |
|
| 64 |
-
# Humanize the AI-detected text using the
|
| 65 |
def humanize_text(AI_text):
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
inputs
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
no_repeat_ngram_size=3,
|
| 79 |
-
)
|
| 80 |
-
paraphrased_text = paraphrase_tokenizer.decode(paraphrased_ids[0], skip_special_tokens=True)
|
| 81 |
-
paraphrased_paragraphs.append(paraphrased_text)
|
| 82 |
-
return "\n\n".join(paraphrased_paragraphs)
|
| 83 |
-
|
| 84 |
-
# Main function to handle the overall process
|
| 85 |
-
def main_function(AI_text):
|
| 86 |
-
# Replace words with synonyms
|
| 87 |
-
text_with_synonyms = replace_with_synonyms(AI_text)
|
| 88 |
-
|
| 89 |
-
# Detect AI-generated content
|
| 90 |
-
ai_probability = detect_ai_generated(text_with_synonyms)
|
| 91 |
-
|
| 92 |
-
# Humanize AI text
|
| 93 |
-
humanized_text = humanize_text(text_with_synonyms)
|
| 94 |
-
|
| 95 |
-
return f"AI-Generated Content: {ai_probability:.2f}%\n\nHumanized Text:\n{humanized_text}"
|
| 96 |
|
| 97 |
# Gradio interface definition
|
| 98 |
-
|
| 99 |
-
fn=
|
| 100 |
inputs="textbox",
|
| 101 |
-
outputs="
|
| 102 |
-
title="AI Text
|
| 103 |
-
description="Enter
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
)
|
| 105 |
|
| 106 |
# Launch the Gradio app
|
| 107 |
-
interface.launch(debug=False)
|
|
|
|
| 3 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, T5Tokenizer, T5ForConditionalGeneration
|
| 4 |
import torch
|
| 5 |
import nltk
|
|
|
|
| 6 |
from nltk.corpus import wordnet
|
| 7 |
import subprocess
|
| 8 |
|
|
|
|
| 11 |
nltk.download('stopwords')
|
| 12 |
nltk.download('wordnet') # Download WordNet
|
| 13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
# Check for GPU and set the device accordingly
|
| 15 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 16 |
|
|
|
|
| 18 |
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english")
|
| 19 |
model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english").to(device)
|
| 20 |
|
| 21 |
+
# Load Parrot Paraphraser model and tokenizer for humanizing text
|
| 22 |
+
paraphrase_tokenizer = T5Tokenizer.from_pretrained("prithivida/parrot_paraphraser_on_T5")
|
| 23 |
+
paraphrase_model = T5ForConditionalGeneration.from_pretrained("prithivida/parrot_paraphraser_on_T5").to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
# AI detection function using DistilBERT
|
| 26 |
def detect_ai_generated(text):
|
|
|
|
| 28 |
with torch.no_grad():
|
| 29 |
outputs = model(**inputs)
|
| 30 |
probabilities = torch.softmax(outputs.logits, dim=1)
|
| 31 |
+
ai_probability = probabilities[0][1].item() # Probability of being AI-generated
|
| 32 |
+
return f"AI-Generated Content Probability: {ai_probability:.2f}%"
|
| 33 |
|
| 34 |
+
# Humanize the AI-detected text using the Parrot Paraphraser model
|
| 35 |
def humanize_text(AI_text):
|
| 36 |
+
inputs = paraphrase_tokenizer(AI_text, return_tensors="pt", max_length=512, truncation=True).to(device)
|
| 37 |
+
with torch.no_grad(): # Avoid gradient calculations for faster inference
|
| 38 |
+
paraphrased_ids = paraphrase_model.generate(
|
| 39 |
+
inputs['input_ids'],
|
| 40 |
+
max_length=inputs['input_ids'].shape[-1] + 20, # Slightly more than the original input length
|
| 41 |
+
num_beams=4,
|
| 42 |
+
early_stopping=True,
|
| 43 |
+
length_penalty=1.0,
|
| 44 |
+
no_repeat_ngram_size=3,
|
| 45 |
+
)
|
| 46 |
+
paraphrased_text = paraphrase_tokenizer.decode(paraphrased_ids[0], skip_special_tokens=True)
|
| 47 |
+
return f"Humanized Text:\n{paraphrased_text}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
|
| 49 |
# Gradio interface definition
|
| 50 |
+
ai_detection_interface = gr.Interface(
|
| 51 |
+
fn=detect_ai_generated,
|
| 52 |
inputs="textbox",
|
| 53 |
+
outputs="text",
|
| 54 |
+
title="AI Text Detection",
|
| 55 |
+
description="Enter text to determine the probability of it being AI-generated."
|
| 56 |
+
)
|
| 57 |
+
|
| 58 |
+
humanization_interface = gr.Interface(
|
| 59 |
+
fn=humanize_text,
|
| 60 |
+
inputs="textbox",
|
| 61 |
+
outputs="text",
|
| 62 |
+
title="Text Humanizer",
|
| 63 |
+
description="Enter text to get a human-written version, paraphrased for natural output."
|
| 64 |
+
)
|
| 65 |
+
|
| 66 |
+
# Combine both interfaces into a single Gradio app with tabs
|
| 67 |
+
interface = gr.TabbedInterface(
|
| 68 |
+
[ai_detection_interface, humanization_interface],
|
| 69 |
+
["AI Detection", "Humanization"]
|
| 70 |
)
|
| 71 |
|
| 72 |
# Launch the Gradio app
|
| 73 |
+
interface.launch(debug=False)
|