Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -5,33 +5,124 @@ import spacy
|
|
| 5 |
import subprocess
|
| 6 |
import nltk
|
| 7 |
from nltk.corpus import wordnet
|
|
|
|
| 8 |
|
| 9 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
nltk.download('wordnet')
|
| 11 |
nltk.download('omw-1.4')
|
| 12 |
|
| 13 |
-
# Ensure the SpaCy model is installed
|
| 14 |
try:
|
| 15 |
nlp = spacy.load("en_core_web_sm")
|
| 16 |
except OSError:
|
| 17 |
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
|
| 18 |
nlp = spacy.load("en_core_web_sm")
|
| 19 |
|
| 20 |
-
# Initialize the English text classification pipeline for AI detection
|
| 21 |
-
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
|
| 22 |
-
|
| 23 |
-
# Function to predict the label and score for English text (AI Detection)
|
| 24 |
-
def predict_en(text):
|
| 25 |
-
res = pipeline_en(text)[0]
|
| 26 |
-
return res['label'], res['score']
|
| 27 |
-
|
| 28 |
# Function to get synonyms using NLTK WordNet (Humanifier)
|
| 29 |
def get_synonyms_nltk(word, pos):
|
| 30 |
synsets = wordnet.synsets(word, pos=pos)
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
|
| 36 |
# Paraphrasing function using SpaCy and NLTK (Humanifier)
|
| 37 |
def paraphrase_with_spacy_nltk(text):
|
|
@@ -41,37 +132,37 @@ def paraphrase_with_spacy_nltk(text):
|
|
| 41 |
for token in doc:
|
| 42 |
# Map SpaCy POS tags to WordNet POS tags
|
| 43 |
pos = None
|
| 44 |
-
if token.pos_
|
| 45 |
pos = wordnet.NOUN
|
| 46 |
-
elif token.pos_
|
| 47 |
pos = wordnet.VERB
|
| 48 |
-
elif token.pos_
|
| 49 |
pos = wordnet.ADJ
|
| 50 |
-
elif token.pos_
|
| 51 |
pos = wordnet.ADV
|
| 52 |
|
| 53 |
synonyms = get_synonyms_nltk(token.text.lower(), pos) if pos else []
|
| 54 |
|
| 55 |
# Replace with a synonym only if it makes sense
|
| 56 |
-
if synonyms and token.pos_ in {"NOUN", "VERB", "ADJ", "ADV"}
|
| 57 |
paraphrased_words.append(synonyms[0])
|
| 58 |
else:
|
| 59 |
paraphrased_words.append(token.text)
|
| 60 |
|
| 61 |
-
|
| 62 |
-
paraphrased_sentence = ' '.join(paraphrased_words)
|
| 63 |
-
|
| 64 |
-
return paraphrased_sentence
|
| 65 |
|
| 66 |
# Combined function: Paraphrase -> Grammar Correction -> Capitalization (Humanifier)
|
| 67 |
def paraphrase_and_correct(text):
|
| 68 |
# Step 1: Paraphrase the text
|
| 69 |
paraphrased_text = paraphrase_with_spacy_nltk(text)
|
| 70 |
|
| 71 |
-
#
|
| 72 |
-
|
|
|
|
|
|
|
|
|
|
| 73 |
|
| 74 |
-
return
|
| 75 |
|
| 76 |
# Gradio app setup with two tabs
|
| 77 |
with gr.Blocks() as demo:
|
|
|
|
| 5 |
import subprocess
|
| 6 |
import nltk
|
| 7 |
from nltk.corpus import wordnet
|
| 8 |
+
from collections import defaultdict
|
| 9 |
|
| 10 |
+
# Initialize the English text classification pipeline for AI detection
|
| 11 |
+
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
|
| 12 |
+
|
| 13 |
+
# Function to predict the label and score for English text (AI Detection)
|
| 14 |
+
def predict_en(text):
|
| 15 |
+
res = pipeline_en(text)[0]
|
| 16 |
+
return res['label'], res['score']
|
| 17 |
+
|
| 18 |
+
# Ensure necessary NLTK data is downloaded for Humanifier
|
| 19 |
nltk.download('wordnet')
|
| 20 |
nltk.download('omw-1.4')
|
| 21 |
|
| 22 |
+
# Ensure the SpaCy model is installed for Humanifier
|
| 23 |
try:
|
| 24 |
nlp = spacy.load("en_core_web_sm")
|
| 25 |
except OSError:
|
| 26 |
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
|
| 27 |
nlp = spacy.load("en_core_web_sm")
|
| 28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
# Function to get synonyms using NLTK WordNet (Humanifier)
|
| 30 |
def get_synonyms_nltk(word, pos):
|
| 31 |
synsets = wordnet.synsets(word, pos=pos)
|
| 32 |
+
synonyms = set()
|
| 33 |
+
for synset in synsets:
|
| 34 |
+
for lemma in synset.lemmas():
|
| 35 |
+
if lemma.name() != word:
|
| 36 |
+
synonyms.add(lemma.name())
|
| 37 |
+
return list(synonyms)
|
| 38 |
+
|
| 39 |
+
# Function to capitalize the first letter of sentences and proper nouns (Humanifier)
|
| 40 |
+
def capitalize_sentences_and_nouns(text):
|
| 41 |
+
doc = nlp(text)
|
| 42 |
+
corrected_text = []
|
| 43 |
+
|
| 44 |
+
for sent in doc.sents:
|
| 45 |
+
sentence = []
|
| 46 |
+
for token in sent:
|
| 47 |
+
if token.i == sent.start: # First word of the sentence
|
| 48 |
+
sentence.append(token.text.capitalize())
|
| 49 |
+
elif token.pos_ == "PROPN": # Proper noun
|
| 50 |
+
sentence.append(token.text.capitalize())
|
| 51 |
+
else:
|
| 52 |
+
sentence.append(token.text)
|
| 53 |
+
corrected_text.append(' '.join(sentence))
|
| 54 |
+
|
| 55 |
+
return ' '.join(corrected_text)
|
| 56 |
+
|
| 57 |
+
# Function to correct tense errors in a sentence (Tense Correction)
|
| 58 |
+
def correct_tense_errors(text):
|
| 59 |
+
doc = nlp(text)
|
| 60 |
+
corrected_text = []
|
| 61 |
+
|
| 62 |
+
for token in doc:
|
| 63 |
+
if token.pos_ == "VERB":
|
| 64 |
+
# Check if verb is in its base form
|
| 65 |
+
if token.tag_ == "VB" and token.text.lower() not in ["be", "have", "do"]:
|
| 66 |
+
# Attempt to correct verb form based on sentence context
|
| 67 |
+
context = " ".join([t.text for t in doc if t.i != token.i])
|
| 68 |
+
corrected_text.append(token.lemma_)
|
| 69 |
+
else:
|
| 70 |
+
corrected_text.append(token.text)
|
| 71 |
+
else:
|
| 72 |
+
corrected_text.append(token.text)
|
| 73 |
+
|
| 74 |
+
return ' '.join(corrected_text)
|
| 75 |
+
|
| 76 |
+
# Function to correct singular/plural errors (Singular/Plural Correction)
|
| 77 |
+
def correct_singular_plural_errors(text):
|
| 78 |
+
doc = nlp(text)
|
| 79 |
+
corrected_text = []
|
| 80 |
+
|
| 81 |
+
# Create a context dictionary for singular/plural determination
|
| 82 |
+
context = defaultdict(int)
|
| 83 |
+
for token in doc:
|
| 84 |
+
if token.pos_ == "NOUN":
|
| 85 |
+
# Track context for noun usage
|
| 86 |
+
if token.tag_ == "NNS":
|
| 87 |
+
context['plural'] += 1
|
| 88 |
+
elif token.tag_ == "NN":
|
| 89 |
+
context['singular'] += 1
|
| 90 |
+
|
| 91 |
+
for token in doc:
|
| 92 |
+
if token.pos_ == "NOUN":
|
| 93 |
+
if token.tag_ == "NN": # Singular noun
|
| 94 |
+
if context['plural'] > context['singular']:
|
| 95 |
+
corrected_text.append(token.lemma_ + 's')
|
| 96 |
+
else:
|
| 97 |
+
corrected_text.append(token.text)
|
| 98 |
+
elif token.tag_ == "NNS": # Plural noun
|
| 99 |
+
if context['singular'] > context['plural']:
|
| 100 |
+
corrected_text.append(token.lemma_)
|
| 101 |
+
else:
|
| 102 |
+
corrected_text.append(token.text)
|
| 103 |
+
else:
|
| 104 |
+
corrected_text.append(token.text)
|
| 105 |
+
else:
|
| 106 |
+
corrected_text.append(token.text)
|
| 107 |
+
|
| 108 |
+
return ' '.join(corrected_text)
|
| 109 |
+
|
| 110 |
+
# Function to check and correct article errors
|
| 111 |
+
def correct_article_errors(text):
|
| 112 |
+
doc = nlp(text)
|
| 113 |
+
corrected_text = []
|
| 114 |
+
for token in doc:
|
| 115 |
+
if token.text in ['a', 'an']:
|
| 116 |
+
next_token = token.nbor(1)
|
| 117 |
+
if token.text == "a" and next_token.text[0].lower() in "aeiou":
|
| 118 |
+
corrected_text.append("an")
|
| 119 |
+
elif token.text == "an" and next_token.text[0].lower() not in "aeiou":
|
| 120 |
+
corrected_text.append("a")
|
| 121 |
+
else:
|
| 122 |
+
corrected_text.append(token.text)
|
| 123 |
+
else:
|
| 124 |
+
corrected_text.append(token.text)
|
| 125 |
+
return ' '.join(corrected_text)
|
| 126 |
|
| 127 |
# Paraphrasing function using SpaCy and NLTK (Humanifier)
|
| 128 |
def paraphrase_with_spacy_nltk(text):
|
|
|
|
| 132 |
for token in doc:
|
| 133 |
# Map SpaCy POS tags to WordNet POS tags
|
| 134 |
pos = None
|
| 135 |
+
if token.pos_ == "NOUN":
|
| 136 |
pos = wordnet.NOUN
|
| 137 |
+
elif token.pos_ == "VERB":
|
| 138 |
pos = wordnet.VERB
|
| 139 |
+
elif token.pos_ == "ADJ":
|
| 140 |
pos = wordnet.ADJ
|
| 141 |
+
elif token.pos_ == "ADV":
|
| 142 |
pos = wordnet.ADV
|
| 143 |
|
| 144 |
synonyms = get_synonyms_nltk(token.text.lower(), pos) if pos else []
|
| 145 |
|
| 146 |
# Replace with a synonym only if it makes sense
|
| 147 |
+
if synonyms and token.pos_ in {"NOUN", "VERB", "ADJ", "ADV"}:
|
| 148 |
paraphrased_words.append(synonyms[0])
|
| 149 |
else:
|
| 150 |
paraphrased_words.append(token.text)
|
| 151 |
|
| 152 |
+
return ' '.join(paraphrased_words)
|
|
|
|
|
|
|
|
|
|
| 153 |
|
| 154 |
# Combined function: Paraphrase -> Grammar Correction -> Capitalization (Humanifier)
|
| 155 |
def paraphrase_and_correct(text):
|
| 156 |
# Step 1: Paraphrase the text
|
| 157 |
paraphrased_text = paraphrase_with_spacy_nltk(text)
|
| 158 |
|
| 159 |
+
# Step 2: Apply grammatical corrections on the paraphrased text
|
| 160 |
+
corrected_text = correct_article_errors(paraphrased_text)
|
| 161 |
+
corrected_text = capitalize_sentences_and_nouns(corrected_text)
|
| 162 |
+
corrected_text = correct_singular_plural_errors(corrected_text)
|
| 163 |
+
final_text = correct_tense_errors(corrected_text)
|
| 164 |
|
| 165 |
+
return final_text
|
| 166 |
|
| 167 |
# Gradio app setup with two tabs
|
| 168 |
with gr.Blocks() as demo:
|