Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from transformers import AutoModelForConditionalGeneration, AutoProcessor | |
| import torch | |
| import pandas as pd | |
| import pytesseract | |
| import cv2 | |
| # Set Tesseract command (only works if Tesseract is already installed on the hosting server) | |
| pytesseract.pytesseract_cmd = r'/usr/bin/tesseract' | |
| # Initialize the model and processor from Hugging Face Hub | |
| model_name = "Qwen/Qwen2-VL-2B-Instruct-AWQ" | |
| model = AutoModelForConditionalGeneration.from_pretrained( | |
| model_name, | |
| torch_dtype="auto" | |
| ) | |
| model.to("cpu") | |
| processor = AutoProcessor.from_pretrained(model_name) | |
| # Preprocessing image for OCR | |
| def preprocess_image(image_path): | |
| image = cv2.imread(image_path) | |
| gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) | |
| _, binary = cv2.threshold(gray, 150, 255, cv2.THRESH_BINARY) | |
| return binary | |
| # OCR-based text extraction | |
| def ocr_extract_text(image_path): | |
| preprocessed_image = preprocess_image(image_path) | |
| return pytesseract.image_to_string(preprocessed_image) | |
| # Model-based image processing | |
| def process_image(image_path): | |
| try: | |
| messages = [{ | |
| "role": "user", | |
| "content": [ | |
| {"type": "image", "image": image_path}, | |
| {"type": "text", "text": ( | |
| "Extract the following details from the invoice:\n" | |
| "- 'invoice_number'\n" | |
| "- 'date'\n" | |
| "- 'place'\n" | |
| "- 'amount' (monetary value in the relevant currency)\n" | |
| "- 'category' (based on the invoice type)" | |
| )} | |
| ] | |
| }] | |
| text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
| # Removed process_vision_info and used the processor directly | |
| inputs = processor(text=[text], padding=True, return_tensors="pt") | |
| inputs = inputs.to(model.device) | |
| generated_ids = model.generate(**inputs, max_new_tokens=128) | |
| output_text = processor.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False) | |
| return parse_details(output_text[0]) | |
| except Exception as e: | |
| print(f"Model failed, falling back to OCR: {e}") | |
| ocr_text = ocr_extract_text(image_path) | |
| return parse_details(ocr_text) | |
| # Parsing details from text | |
| def parse_details(details): | |
| parsed_data = { | |
| "Invoice Number": None, | |
| "Date": None, | |
| "Place": None, | |
| "Amount": None, | |
| "Category": None | |
| } | |
| lines = details.split("\n") | |
| for line in lines: | |
| lower_line = line.lower() | |
| if "invoice" in lower_line: | |
| parsed_data["Invoice Number"] = line.split(":")[-1].strip() | |
| elif "date" in lower_line: | |
| parsed_data["Date"] = line.split(":")[-1].strip() | |
| elif "place" in lower_line: | |
| parsed_data["Place"] = line.split(":")[-1].strip() | |
| elif any(keyword in lower_line for keyword in ["total", "amount", "cost"]): | |
| parsed_data["Amount"] = line.split(":")[-1].strip() | |
| else: | |
| parsed_data["Category"] = "General" | |
| return parsed_data | |
| # Gradio Interface | |
| def gradio_interface(image_files): | |
| results = [] | |
| for image_file in image_files: | |
| details = process_image(image_file.name) | |
| results.append(details) | |
| df = pd.DataFrame(results) | |
| return df | |
| # Launch Gradio App | |
| grpc_interface = gr.Interface( | |
| fn=gradio_interface, | |
| inputs=gr.File(label="Upload Invoice Images", file_types=["image"]), | |
| outputs=gr.Dataframe(interactive=True), | |
| title="Invoice Extraction System" | |
| ) | |
| if __name__ == "__main__": | |
| grpc_interface.launch(share=True) | |