Spaces:
Runtime error
Runtime error
Update main.py
Browse files
main.py
CHANGED
|
@@ -1,32 +1,52 @@
|
|
| 1 |
import os
|
| 2 |
os.environ['HF_HOME'] = '/tmp'
|
| 3 |
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
import
|
| 7 |
import logging
|
| 8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
-
|
|
|
|
|
|
|
| 11 |
app = Flask(__name__)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
# -------------------------
|
| 14 |
-
# Models (
|
| 15 |
# -------------------------
|
| 16 |
-
# Primary summarizer
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
summarizer = pipeline("summarization", model=
|
| 21 |
|
| 22 |
-
#
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
|
|
|
| 27 |
|
| 28 |
# -------------------------
|
| 29 |
-
# Presets &
|
| 30 |
# -------------------------
|
| 31 |
LENGTH_PRESETS = {
|
| 32 |
"short": {"min_length": 20, "max_length": 60},
|
|
@@ -34,6 +54,34 @@ LENGTH_PRESETS = {
|
|
| 34 |
"long": {"min_length": 130, "max_length": 300},
|
| 35 |
}
|
| 36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
def chunk_text_by_chars(text, max_chars=1500, overlap=200):
|
| 38 |
if len(text) <= max_chars:
|
| 39 |
return [text]
|
|
@@ -47,168 +95,234 @@ def chunk_text_by_chars(text, max_chars=1500, overlap=200):
|
|
| 47 |
end = start + nl
|
| 48 |
chunk = text[start:end]
|
| 49 |
parts.append(chunk.strip())
|
| 50 |
-
start = end - overlap
|
| 51 |
return parts
|
| 52 |
|
| 53 |
-
def apply_tone_instruction(text, tone):
|
|
|
|
|
|
|
|
|
|
| 54 |
tone = (tone or "neutral").lower()
|
| 55 |
-
if tone == "
|
| 56 |
-
instr = "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
elif tone == "casual":
|
| 58 |
-
instr = "Summarize in a casual, conversational tone
|
| 59 |
-
elif tone == "
|
| 60 |
-
instr = "
|
| 61 |
else:
|
| 62 |
-
instr = "Summarize
|
| 63 |
-
return f"{instr}\n\n{text}"
|
| 64 |
|
| 65 |
-
|
| 66 |
-
def _first_int_from_text(s, fallback=None):
|
| 67 |
-
m = re.search(r"\d{1,5}", s)
|
| 68 |
-
return int(m.group()) if m else fallback
|
| 69 |
|
|
|
|
| 70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
|
|
|
|
|
|
|
|
|
|
| 72 |
def generate_summarization_config(text):
|
| 73 |
"""
|
| 74 |
-
|
| 75 |
-
|
| 76 |
"""
|
| 77 |
-
# short prompt (keeps prompt length bounded)
|
| 78 |
prompt = (
|
| 79 |
-
"You are
|
| 80 |
-
"Given the
|
| 81 |
-
"an estimated MIN and MAX length in words for the summary, and a TONE (neutral/formal/casual/bullet).\n"
|
| 82 |
-
"Respond ONLY in compact JSON (single line):\n"
|
| 83 |
'{"length":"short|medium|long","min_words":MIN,"max_words":MAX,"tone":"neutral|formal|casual|bullet"}\n\n'
|
| 84 |
"Text:\n'''"
|
| 85 |
-
+
|
| 86 |
-
|
| 87 |
)
|
| 88 |
|
| 89 |
try:
|
| 90 |
-
#
|
| 91 |
-
# and a small token limit to keep latency low on CPU.
|
| 92 |
gen = param_generator(
|
| 93 |
prompt,
|
| 94 |
-
max_new_tokens=64,
|
| 95 |
-
num_beams=1,
|
| 96 |
-
do_sample=False
|
|
|
|
| 97 |
)
|
| 98 |
out = gen[0].get("generated_text", "").strip()
|
| 99 |
-
#
|
| 100 |
cfg = None
|
| 101 |
try:
|
| 102 |
cfg = json.loads(out)
|
| 103 |
except Exception:
|
| 104 |
-
|
| 105 |
-
if
|
| 106 |
-
raw =
|
| 107 |
cfg = json.loads(raw)
|
| 108 |
if not cfg:
|
| 109 |
-
raise ValueError("
|
| 110 |
|
| 111 |
length = cfg.get("length", "").lower()
|
| 112 |
tone = cfg.get("tone", "").lower()
|
| 113 |
min_w = cfg.get("min_words")
|
| 114 |
max_w = cfg.get("max_words")
|
| 115 |
|
| 116 |
-
# normalize & fallback rules
|
| 117 |
if length not in ("short", "medium", "long"):
|
| 118 |
words = len(text.split())
|
| 119 |
length = "short" if words < 150 else ("medium" if words < 800 else "long")
|
| 120 |
if tone not in ("neutral", "formal", "casual", "bullet"):
|
| 121 |
tone = "neutral"
|
| 122 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
defaults = {"short": (15, 50), "medium": (50, 130), "long": (130, 300)}
|
| 124 |
-
dmin, dmax = defaults
|
| 125 |
min_len = int(min_w) if isinstance(min_w, int) else dmin
|
| 126 |
max_len = int(max_w) if isinstance(max_w, int) else dmax
|
| 127 |
|
| 128 |
-
# clamp to sane bounds
|
| 129 |
min_len = max(5, min(min_len, 2000))
|
| 130 |
max_len = max(min_len + 5, min(max_len, 4000))
|
| 131 |
|
|
|
|
| 132 |
return {"length": length, "min_length": min_len, "max_length": max_len, "tone": tone}
|
| 133 |
except Exception as e:
|
| 134 |
-
|
| 135 |
-
logger.exception("param-generator failed or timed out, falling back to heuristic: %s", str(e))
|
| 136 |
words = len(text.split())
|
| 137 |
length = "short" if words < 150 else ("medium" if words < 800 else "long")
|
| 138 |
fallback = {"short": (15, 50), "medium": (50, 130), "long": (130, 300)}
|
| 139 |
mn, mx = fallback[length]
|
| 140 |
return {"length": length, "min_length": mn, "max_length": mx, "tone": "neutral"}
|
| 141 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
# -------------------------
|
| 143 |
# Routes
|
| 144 |
# -------------------------
|
| 145 |
@app.route("/")
|
| 146 |
def home():
|
| 147 |
-
#
|
| 148 |
return render_template("index.html")
|
| 149 |
|
| 150 |
@app.route("/summarize", methods=["POST"])
|
| 151 |
def summarize_route():
|
| 152 |
-
|
| 153 |
data = request.get_json(force=True)
|
| 154 |
-
text = data.get("text"
|
| 155 |
requested_length = (data.get("length") or "medium").lower()
|
| 156 |
requested_tone = (data.get("tone") or "neutral").lower()
|
| 157 |
|
| 158 |
if not text or len(text.split()) < 5:
|
| 159 |
return jsonify({"error": "Input too short."}), 400
|
| 160 |
|
| 161 |
-
#
|
| 162 |
if requested_length in ("auto", "ai") or requested_tone in ("auto", "ai"):
|
| 163 |
cfg = generate_summarization_config(text)
|
| 164 |
-
|
| 165 |
-
|
| 166 |
preset_min = cfg.get("min_length")
|
| 167 |
preset_max = cfg.get("max_length")
|
| 168 |
-
preset = LENGTH_PRESETS.get(length, LENGTH_PRESETS["medium"])
|
| 169 |
else:
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
preset_max = preset["max_length"]
|
| 175 |
|
| 176 |
-
#
|
| 177 |
-
|
| 178 |
-
|
| 179 |
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
out = summarizer(
|
| 186 |
-
prompted,
|
| 187 |
-
min_length=min_l,
|
| 188 |
-
max_length=max_l,
|
| 189 |
-
truncation=True
|
| 190 |
-
)[0]["summary_text"]
|
| 191 |
-
summaries.append(out.strip())
|
| 192 |
-
|
| 193 |
-
if len(summaries) == 1:
|
| 194 |
-
final = summaries[0]
|
| 195 |
else:
|
| 196 |
-
|
| 197 |
-
prompted = apply_tone_instruction(combined, tone)
|
| 198 |
-
final = summarizer(
|
| 199 |
-
prompted,
|
| 200 |
-
min_length=preset["min_length"],
|
| 201 |
-
max_length=preset["max_length"],
|
| 202 |
-
truncation=True
|
| 203 |
-
)[0]["summary_text"]
|
| 204 |
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 208 |
|
| 209 |
-
|
| 210 |
-
|
| 211 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 212 |
if __name__ == "__main__":
|
| 213 |
-
#
|
| 214 |
-
app.run(host="0.0.0.0", port=7860, debug=
|
|
|
|
| 1 |
import os
|
| 2 |
os.environ['HF_HOME'] = '/tmp'
|
| 3 |
|
| 4 |
+
import time
|
| 5 |
+
import json
|
| 6 |
+
import re
|
| 7 |
import logging
|
| 8 |
+
from collections import Counter
|
| 9 |
+
|
| 10 |
+
from flask import Flask, request, jsonify, render_template
|
| 11 |
+
import torch
|
| 12 |
+
from transformers import (
|
| 13 |
+
AutoTokenizer,
|
| 14 |
+
AutoModelForSeq2SeqLM,
|
| 15 |
+
pipeline
|
| 16 |
+
)
|
| 17 |
|
| 18 |
+
# -------------------------
|
| 19 |
+
# Basic app + logging
|
| 20 |
+
# -------------------------
|
| 21 |
app = Flask(__name__)
|
| 22 |
+
logging.basicConfig(level=logging.INFO)
|
| 23 |
+
logger = logging.getLogger("summarizer")
|
| 24 |
+
|
| 25 |
+
# -------------------------
|
| 26 |
+
# Device selection (GPU if available)
|
| 27 |
+
# -------------------------
|
| 28 |
+
USE_GPU = torch.cuda.is_available()
|
| 29 |
+
DEVICE = 0 if USE_GPU else -1
|
| 30 |
+
logger.info("CUDA available: %s. Using device: %s", USE_GPU, DEVICE)
|
| 31 |
|
| 32 |
# -------------------------
|
| 33 |
+
# Models (quality-first)
|
| 34 |
# -------------------------
|
| 35 |
+
# Primary summarizer (higher-quality model)
|
| 36 |
+
SUMMARIZER_MODEL = "facebook/bart-large-cnn" # quality-focused
|
| 37 |
+
summ_tokenizer = AutoTokenizer.from_pretrained(SUMMARIZER_MODEL)
|
| 38 |
+
summ_model = AutoModelForSeq2SeqLM.from_pretrained(SUMMARIZER_MODEL)
|
| 39 |
+
summarizer = pipeline("summarization", model=summ_model, tokenizer=summ_tokenizer, device=DEVICE)
|
| 40 |
|
| 41 |
+
# Parameter-generator (small instruction model to "think" and choose settings)
|
| 42 |
+
# We keep this compact but capable. If you later want stronger reasoning, swap to flan-t5-base.
|
| 43 |
+
PARAM_MODEL = "google/flan-t5-small"
|
| 44 |
+
param_tokenizer = AutoTokenizer.from_pretrained(PARAM_MODEL)
|
| 45 |
+
param_model = AutoModelForSeq2SeqLM.from_pretrained(PARAM_MODEL)
|
| 46 |
+
param_generator = pipeline("text2text-generation", model=param_model, tokenizer=param_tokenizer, device=DEVICE)
|
| 47 |
|
| 48 |
# -------------------------
|
| 49 |
+
# Presets & utilities
|
| 50 |
# -------------------------
|
| 51 |
LENGTH_PRESETS = {
|
| 52 |
"short": {"min_length": 20, "max_length": 60},
|
|
|
|
| 54 |
"long": {"min_length": 130, "max_length": 300},
|
| 55 |
}
|
| 56 |
|
| 57 |
+
# Simple sentence splitter and extractive prefilter (helps focus abstractive model)
|
| 58 |
+
_STOPWORDS = {
|
| 59 |
+
"the","and","is","in","to","of","a","that","it","on","for","as","are","with","was","be","by","this","an","or","from","at","which","we","has","have"
|
| 60 |
+
}
|
| 61 |
+
|
| 62 |
+
def tokenize_sentences(text):
|
| 63 |
+
sents = re.split(r'(?<=[.!?])\s+', text.strip())
|
| 64 |
+
return [s.strip() for s in sents if s.strip()]
|
| 65 |
+
|
| 66 |
+
def extractive_prefilter(text, top_k=12):
|
| 67 |
+
"""
|
| 68 |
+
Rank sentences by (non-stopword) word-frequency and return top_k sentences
|
| 69 |
+
in original order joined. Useful for very long inputs.
|
| 70 |
+
"""
|
| 71 |
+
sents = tokenize_sentences(text)
|
| 72 |
+
if len(sents) <= top_k:
|
| 73 |
+
return text
|
| 74 |
+
words = re.findall(r"\w+", text.lower())
|
| 75 |
+
freqs = Counter(w for w in words if w not in _STOPWORDS)
|
| 76 |
+
scores = []
|
| 77 |
+
for i, s in enumerate(sents):
|
| 78 |
+
ws = re.findall(r"\w+", s.lower())
|
| 79 |
+
score = sum(freqs.get(w, 0) for w in ws)
|
| 80 |
+
scores.append((score, i, s))
|
| 81 |
+
scores.sort(reverse=True)
|
| 82 |
+
chosen = [s for _, _, s in sorted(scores[:top_k], key=lambda t: t[1])]
|
| 83 |
+
return " ".join(chosen)
|
| 84 |
+
|
| 85 |
def chunk_text_by_chars(text, max_chars=1500, overlap=200):
|
| 86 |
if len(text) <= max_chars:
|
| 87 |
return [text]
|
|
|
|
| 95 |
end = start + nl
|
| 96 |
chunk = text[start:end]
|
| 97 |
parts.append(chunk.strip())
|
| 98 |
+
start = max(end - overlap, end) # move forward with overlap
|
| 99 |
return parts
|
| 100 |
|
| 101 |
+
def apply_tone_instruction(text, tone, target_sentences=None):
|
| 102 |
+
"""
|
| 103 |
+
Build a clear instruction prompt for the summarizer based on tone/length.
|
| 104 |
+
"""
|
| 105 |
tone = (tone or "neutral").lower()
|
| 106 |
+
if tone == "bullet":
|
| 107 |
+
instr = "Produce concise bullet points. Each bullet should be short (<=20 words) and focused. No extra commentary."
|
| 108 |
+
elif tone == "short":
|
| 109 |
+
ts = target_sentences or 1
|
| 110 |
+
instr = f"Summarize the content in {ts} sentence{'s' if ts>1 else ''}. Be highly abstractive and avoid copying sentences verbatim."
|
| 111 |
+
elif tone == "formal":
|
| 112 |
+
instr = "Summarize in a formal, professional tone in 2-4 sentences. Keep it precise and well-structured."
|
| 113 |
elif tone == "casual":
|
| 114 |
+
instr = "Summarize in a casual, conversational tone in 1-3 sentences. Use plain, friendly language."
|
| 115 |
+
elif tone == "long":
|
| 116 |
+
instr = "Provide a clear, structured summary in 4-8 sentences, covering key points and relevant context."
|
| 117 |
else:
|
| 118 |
+
instr = "Summarize the content in 2-3 sentences. Be clear and concise."
|
|
|
|
| 119 |
|
| 120 |
+
instr += " Do not repeat the same information. Prefer rephrasing over copying."
|
|
|
|
|
|
|
|
|
|
| 121 |
|
| 122 |
+
return f"{instr}\n\nText:\n{text}"
|
| 123 |
|
| 124 |
+
# helper: extract first integer
|
| 125 |
+
def _first_int_from_text(s, fallback=None):
|
| 126 |
+
m = re.search(r"\d{1,4}", s)
|
| 127 |
+
return int(m.group()) if m else fallback
|
| 128 |
|
| 129 |
+
# -------------------------
|
| 130 |
+
# Parameter generator (AI "thinking" module)
|
| 131 |
+
# -------------------------
|
| 132 |
def generate_summarization_config(text):
|
| 133 |
"""
|
| 134 |
+
Use the instruction model to recommend: length(short|medium|long), min_words, max_words, tone.
|
| 135 |
+
Falls back to heuristics on failure.
|
| 136 |
"""
|
|
|
|
| 137 |
prompt = (
|
| 138 |
+
"You are an assistant that recommends optimal summarization settings.\n"
|
| 139 |
+
"Given the text, respond ONLY with single-line JSON EXACTLY like:\n"
|
|
|
|
|
|
|
| 140 |
'{"length":"short|medium|long","min_words":MIN,"max_words":MAX,"tone":"neutral|formal|casual|bullet"}\n\n'
|
| 141 |
"Text:\n'''"
|
| 142 |
+
+ text[:4000] +
|
| 143 |
+
"'''"
|
| 144 |
)
|
| 145 |
|
| 146 |
try:
|
| 147 |
+
# keep generation short and deterministic; use max_new_tokens (avoid max_length)
|
|
|
|
| 148 |
gen = param_generator(
|
| 149 |
prompt,
|
| 150 |
+
max_new_tokens=64,
|
| 151 |
+
num_beams=1,
|
| 152 |
+
do_sample=False,
|
| 153 |
+
early_stopping=True
|
| 154 |
)
|
| 155 |
out = gen[0].get("generated_text", "").strip()
|
| 156 |
+
# attempt JSON parse
|
| 157 |
cfg = None
|
| 158 |
try:
|
| 159 |
cfg = json.loads(out)
|
| 160 |
except Exception:
|
| 161 |
+
j = re.search(r"\{.*\}", out, re.DOTALL)
|
| 162 |
+
if j:
|
| 163 |
+
raw = j.group().replace("'", '"')
|
| 164 |
cfg = json.loads(raw)
|
| 165 |
if not cfg:
|
| 166 |
+
raise ValueError("Param-generator output not parseable")
|
| 167 |
|
| 168 |
length = cfg.get("length", "").lower()
|
| 169 |
tone = cfg.get("tone", "").lower()
|
| 170 |
min_w = cfg.get("min_words")
|
| 171 |
max_w = cfg.get("max_words")
|
| 172 |
|
|
|
|
| 173 |
if length not in ("short", "medium", "long"):
|
| 174 |
words = len(text.split())
|
| 175 |
length = "short" if words < 150 else ("medium" if words < 800 else "long")
|
| 176 |
if tone not in ("neutral", "formal", "casual", "bullet"):
|
| 177 |
tone = "neutral"
|
| 178 |
|
| 179 |
+
if not isinstance(min_w, int):
|
| 180 |
+
min_w = _first_int_from_text(out, fallback=None)
|
| 181 |
+
if not isinstance(max_w, int):
|
| 182 |
+
max_w = _first_int_from_text(out[::-1], fallback=None)
|
| 183 |
+
|
| 184 |
defaults = {"short": (15, 50), "medium": (50, 130), "long": (130, 300)}
|
| 185 |
+
dmin, dmax = defaults.get(length, (50,130))
|
| 186 |
min_len = int(min_w) if isinstance(min_w, int) else dmin
|
| 187 |
max_len = int(max_w) if isinstance(max_w, int) else dmax
|
| 188 |
|
|
|
|
| 189 |
min_len = max(5, min(min_len, 2000))
|
| 190 |
max_len = max(min_len + 5, min(max_len, 4000))
|
| 191 |
|
| 192 |
+
logger.info("Param-generator chose: length=%s tone=%s min=%s max=%s", length, tone, min_len, max_len)
|
| 193 |
return {"length": length, "min_length": min_len, "max_length": max_len, "tone": tone}
|
| 194 |
except Exception as e:
|
| 195 |
+
logger.exception("Param-generator failed; falling back to heuristic: %s", str(e))
|
|
|
|
| 196 |
words = len(text.split())
|
| 197 |
length = "short" if words < 150 else ("medium" if words < 800 else "long")
|
| 198 |
fallback = {"short": (15, 50), "medium": (50, 130), "long": (130, 300)}
|
| 199 |
mn, mx = fallback[length]
|
| 200 |
return {"length": length, "min_length": mn, "max_length": mx, "tone": "neutral"}
|
| 201 |
|
| 202 |
+
# -------------------------
|
| 203 |
+
# Two-stage summarization helpers
|
| 204 |
+
# -------------------------
|
| 205 |
+
def refine_and_combine(summaries_list, tone, final_target_sentences=None):
|
| 206 |
+
"""
|
| 207 |
+
Combine chunk summaries and perform a refinement pass to produce cohesive final summary.
|
| 208 |
+
"""
|
| 209 |
+
combined = "\n\n".join(summaries_list)
|
| 210 |
+
if len(combined.split()) > 2000:
|
| 211 |
+
combined = extractive_prefilter(combined, top_k=20)
|
| 212 |
+
|
| 213 |
+
prompt = apply_tone_instruction(combined, tone, target_sentences=final_target_sentences)
|
| 214 |
+
|
| 215 |
+
# heuristics for min/max
|
| 216 |
+
tgt_sent = final_target_sentences or 3
|
| 217 |
+
gen_kwargs = {
|
| 218 |
+
"min_length": max(20, int(tgt_sent * 8)),
|
| 219 |
+
"max_length": max(60, int(tgt_sent * 30)),
|
| 220 |
+
"num_beams": 6,
|
| 221 |
+
"early_stopping": True,
|
| 222 |
+
"no_repeat_ngram_size": 3,
|
| 223 |
+
"do_sample": False,
|
| 224 |
+
}
|
| 225 |
+
|
| 226 |
+
try:
|
| 227 |
+
out = summarizer(prompt, **gen_kwargs)[0]["summary_text"].strip()
|
| 228 |
+
return out
|
| 229 |
+
except Exception as e:
|
| 230 |
+
logger.exception("Refine step failed: %s", e)
|
| 231 |
+
return " ".join(summaries_list[:3])
|
| 232 |
+
|
| 233 |
# -------------------------
|
| 234 |
# Routes
|
| 235 |
# -------------------------
|
| 236 |
@app.route("/")
|
| 237 |
def home():
|
| 238 |
+
# Ensure you have templates/index.html in place
|
| 239 |
return render_template("index.html")
|
| 240 |
|
| 241 |
@app.route("/summarize", methods=["POST"])
|
| 242 |
def summarize_route():
|
| 243 |
+
t0 = time.time()
|
| 244 |
data = request.get_json(force=True)
|
| 245 |
+
text = (data.get("text") or "")[:60000] # cap input to reasonable size
|
| 246 |
requested_length = (data.get("length") or "medium").lower()
|
| 247 |
requested_tone = (data.get("tone") or "neutral").lower()
|
| 248 |
|
| 249 |
if not text or len(text.split()) < 5:
|
| 250 |
return jsonify({"error": "Input too short."}), 400
|
| 251 |
|
| 252 |
+
# 1) Decide settings (AI or explicit)
|
| 253 |
if requested_length in ("auto", "ai") or requested_tone in ("auto", "ai"):
|
| 254 |
cfg = generate_summarization_config(text)
|
| 255 |
+
length_choice = cfg.get("length", "medium")
|
| 256 |
+
tone_choice = cfg.get("tone", "neutral")
|
| 257 |
preset_min = cfg.get("min_length")
|
| 258 |
preset_max = cfg.get("max_length")
|
|
|
|
| 259 |
else:
|
| 260 |
+
length_choice = requested_length if requested_length in ("short","medium","long") else "medium"
|
| 261 |
+
tone_choice = requested_tone if requested_tone in ("neutral","formal","casual","bullet","short","long") else "neutral"
|
| 262 |
+
preset_min = LENGTH_PRESETS.get(length_choice, LENGTH_PRESETS["medium"])["min_length"]
|
| 263 |
+
preset_max = LENGTH_PRESETS.get(length_choice, LENGTH_PRESETS["medium"])["max_length"]
|
|
|
|
| 264 |
|
| 265 |
+
# Map chosen length to target final sentences
|
| 266 |
+
sentence_map = {"short": 1, "medium": 3, "long": 6}
|
| 267 |
+
final_target_sentences = sentence_map.get(length_choice, 3)
|
| 268 |
|
| 269 |
+
# 2) Prefilter if extremely long
|
| 270 |
+
words_len = len(text.split())
|
| 271 |
+
if words_len > 3500:
|
| 272 |
+
text_for_chunks = extractive_prefilter(text, top_k=40)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 273 |
else:
|
| 274 |
+
text_for_chunks = text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 275 |
|
| 276 |
+
# 3) Chunking
|
| 277 |
+
chunks = chunk_text_by_chars(text_for_chunks, max_chars=1400, overlap=200)
|
| 278 |
+
chunk_summaries = []
|
| 279 |
+
|
| 280 |
+
# 4) Summarize each chunk
|
| 281 |
+
for chunk in chunks:
|
| 282 |
+
chunk_target = 1 if length_choice == "short" else 2
|
| 283 |
+
chunk_tone = tone_choice if tone_choice in ("formal","casual","bullet") else "neutral"
|
| 284 |
+
prompt = apply_tone_instruction(chunk, chunk_tone, target_sentences=chunk_target)
|
| 285 |
+
|
| 286 |
+
gen_kwargs = {
|
| 287 |
+
"min_length": 12 if chunk_target == 1 else 24,
|
| 288 |
+
"max_length": 60 if chunk_target == 1 else 120,
|
| 289 |
+
"num_beams": 5,
|
| 290 |
+
"early_stopping": True,
|
| 291 |
+
"no_repeat_ngram_size": 3,
|
| 292 |
+
"do_sample": False,
|
| 293 |
+
}
|
| 294 |
+
|
| 295 |
+
try:
|
| 296 |
+
out = summarizer(prompt, **gen_kwargs)[0]["summary_text"].strip()
|
| 297 |
+
except Exception as e:
|
| 298 |
+
logger.exception("Chunk summarization failed, using extractive fallback: %s", e)
|
| 299 |
+
out = extractive_prefilter(chunk, top_k=3)
|
| 300 |
+
chunk_summaries.append(out)
|
| 301 |
|
| 302 |
+
# 5) Combine & refine
|
| 303 |
+
final = refine_and_combine(chunk_summaries, tone_choice, final_target_sentences=final_target_sentences)
|
| 304 |
|
| 305 |
+
# 6) Post-process for bullet tone
|
| 306 |
+
if tone_choice == "bullet":
|
| 307 |
+
parts = re.split(r'[\n\r]+|(?:\.\s+)|(?:;\s+)', final)
|
| 308 |
+
bullets = [f"- {p.strip().rstrip('.')}" for p in parts if p.strip()]
|
| 309 |
+
final = "\n".join(bullets[:20])
|
| 310 |
+
|
| 311 |
+
elapsed = time.time() - t0
|
| 312 |
+
meta = {
|
| 313 |
+
"length_choice": length_choice,
|
| 314 |
+
"tone": tone_choice,
|
| 315 |
+
"chunks": len(chunks),
|
| 316 |
+
"input_words": words_len,
|
| 317 |
+
"time_seconds": round(elapsed, 2),
|
| 318 |
+
"device": ("gpu" if USE_GPU else "cpu")
|
| 319 |
+
}
|
| 320 |
+
|
| 321 |
+
return jsonify({"summary": final, "meta": meta})
|
| 322 |
+
|
| 323 |
+
# -------------------------
|
| 324 |
+
# Run
|
| 325 |
+
# -------------------------
|
| 326 |
if __name__ == "__main__":
|
| 327 |
+
# In production use Gunicorn; debug True here only for local testing
|
| 328 |
+
app.run(host="0.0.0.0", port=7860, debug=False)
|