Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
!pip install --upgrade transformers gradio
|
| 2 |
+
import torch
|
| 3 |
+
from transformers import AutoImageProcessor, AutoModelForObjectDetection, pipeline
|
| 4 |
+
from PIL import Image, ImageDraw
|
| 5 |
+
import gradio as gr
|
| 6 |
+
|
| 7 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 8 |
+
print(f"Using device: {device}")
|
| 9 |
+
|
| 10 |
+
checkpoint = "PekingU/rtdetr_v2_r50vd" # Or any of the other checkpoints
|
| 11 |
+
|
| 12 |
+
image_processor = AutoImageProcessor.from_pretrained(checkpoint)
|
| 13 |
+
model = AutoModelForObjectDetection.from_pretrained(checkpoint).to(device)
|
| 14 |
+
|
| 15 |
+
# Colors for visualization (same as before)
|
| 16 |
+
COLORS = [[0.000, 0.447, 0.741], [0.850, 0.325, 0.098], [0.929, 0.694, 0.125],
|
| 17 |
+
[0.494, 0.184, 0.556], [0.466, 0.674, 0.188], [0.301, 0.745, 0.933]] * 100
|
| 18 |
+
|
| 19 |
+
def inference(image, threshold=0.3):
|
| 20 |
+
"""Performs object detection and returns an annotated image."""
|
| 21 |
+
pipe = pipeline("object-detection", model=model, image_processor=image_processor, device=device)
|
| 22 |
+
results = pipe(image, threshold=threshold)
|
| 23 |
+
|
| 24 |
+
annotated_image = image.copy()
|
| 25 |
+
draw = ImageDraw.Draw(annotated_image)
|
| 26 |
+
|
| 27 |
+
for i, result in enumerate(results):
|
| 28 |
+
box = result["box"]
|
| 29 |
+
color = tuple([int(x * 255) for x in COLORS[i]])
|
| 30 |
+
xmin, ymin, xmax, ymax = box["xmin"], box["ymin"], box["xmax"], box["ymax"]
|
| 31 |
+
draw.rectangle((xmin, ymin, xmax, ymax), fill=None, outline=color, width=2)
|
| 32 |
+
draw.text((xmin, ymin), text=f"{result['label']}: {result['score']:.2f}", fill=color)
|
| 33 |
+
|
| 34 |
+
return annotated_image
|
| 35 |
+
|
| 36 |
+
# Gradio interface
|
| 37 |
+
iface = gr.Interface(
|
| 38 |
+
fn=inference,
|
| 39 |
+
inputs=gr.Image(type="pil"),
|
| 40 |
+
outputs=gr.Image(type="pil"),
|
| 41 |
+
title="RT-DETR v2 Object Detection",
|
| 42 |
+
description="Upload an image to detect objects.",
|
| 43 |
+
examples=["/content/crowd7.jpg"],
|
| 44 |
+
)
|
| 45 |
+
|
| 46 |
+
iface.launch()
|