Spaces:
Sleeping
Sleeping
mochuan zhan
commited on
Commit
·
360f3af
1
Parent(s):
a2ce9c9
fix +++
Browse files- app.py +15 -15
- vit_model.pth +1 -1
app.py
CHANGED
|
@@ -69,13 +69,14 @@ class ViT(nn.Module):
|
|
| 69 |
model = ViT(num_classes=10) # 确保num_classes与你的MNIST任务一致
|
| 70 |
model_path = "vit_model.pth" # 模型权重文件名
|
| 71 |
model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu'), weights_only=True))
|
| 72 |
-
|
| 73 |
|
| 74 |
# 定义图像预处理
|
| 75 |
transform = transforms.Compose([
|
| 76 |
-
transforms.
|
|
|
|
| 77 |
transforms.ToTensor(),
|
| 78 |
-
transforms.Normalize((0.
|
| 79 |
])
|
| 80 |
|
| 81 |
# 定义预测函数
|
|
@@ -87,18 +88,15 @@ def classify_image(image):
|
|
| 87 |
# 确保 image 是一个 PIL 图像
|
| 88 |
if not isinstance(image, Image.Image):
|
| 89 |
raise TypeError(f"Expected image to be PIL Image, but got {type(image)}")
|
|
|
|
| 90 |
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
# 反转颜色
|
| 95 |
-
image = ImageOps.invert(image)
|
| 96 |
-
|
| 97 |
-
# 调整图像大小
|
| 98 |
-
image = image.resize((224, 224))
|
| 99 |
-
|
| 100 |
# 图像预处理
|
| 101 |
img = transform(image).unsqueeze(0) # 添加批次维度
|
|
|
|
|
|
|
|
|
|
| 102 |
|
| 103 |
# 模型预测
|
| 104 |
with torch.no_grad():
|
|
@@ -106,10 +104,11 @@ def classify_image(image):
|
|
| 106 |
probabilities = F.softmax(outputs, dim=1)
|
| 107 |
|
| 108 |
# 获取预测结果
|
| 109 |
-
_, predicted = torch.max(
|
| 110 |
confidence = probabilities[0][predicted].item()
|
| 111 |
|
| 112 |
# 返回结果字典,包含预测类别和置信度
|
|
|
|
| 113 |
return {str(predicted.item()): confidence}
|
| 114 |
|
| 115 |
# # 创建Gradio界面
|
|
@@ -123,11 +122,12 @@ def classify_image(image):
|
|
| 123 |
|
| 124 |
iface = gr.Interface(
|
| 125 |
fn=classify_image,
|
| 126 |
-
inputs=gr.Sketchpad(
|
| 127 |
outputs=gr.Label(num_top_classes=1),
|
| 128 |
title="MNIST Digit Classification with ViT",
|
| 129 |
description="Use the mouse to hand draw a number and the model will predict the category it belongs to."
|
| 130 |
)
|
| 131 |
|
| 132 |
|
| 133 |
-
|
|
|
|
|
|
| 69 |
model = ViT(num_classes=10) # 确保num_classes与你的MNIST任务一致
|
| 70 |
model_path = "vit_model.pth" # 模型权重文件名
|
| 71 |
model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu'), weights_only=True))
|
| 72 |
+
model.eval()
|
| 73 |
|
| 74 |
# 定义图像预处理
|
| 75 |
transform = transforms.Compose([
|
| 76 |
+
transforms.Grayscale(num_output_channels=1), # 转换为单通道
|
| 77 |
+
transforms.Resize((28, 28)),
|
| 78 |
transforms.ToTensor(),
|
| 79 |
+
transforms.Normalize((0.1307,), (0.3081,))
|
| 80 |
])
|
| 81 |
|
| 82 |
# 定义预测函数
|
|
|
|
| 88 |
# 确保 image 是一个 PIL 图像
|
| 89 |
if not isinstance(image, Image.Image):
|
| 90 |
raise TypeError(f"Expected image to be PIL Image, but got {type(image)}")
|
| 91 |
+
# 打印image的数组
|
| 92 |
|
| 93 |
+
print(image)
|
| 94 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
# 图像预处理
|
| 96 |
img = transform(image).unsqueeze(0) # 添加批次维度
|
| 97 |
+
|
| 98 |
+
image_pil = Image.fromarray(img.numpy().squeeze() * 255).convert('L')
|
| 99 |
+
image_pil.show()
|
| 100 |
|
| 101 |
# 模型预测
|
| 102 |
with torch.no_grad():
|
|
|
|
| 104 |
probabilities = F.softmax(outputs, dim=1)
|
| 105 |
|
| 106 |
# 获取预测结果
|
| 107 |
+
_, predicted = torch.max(probabilities, 1)
|
| 108 |
confidence = probabilities[0][predicted].item()
|
| 109 |
|
| 110 |
# 返回结果字典,包含预测类别和置信度
|
| 111 |
+
print(predicted, confidence)
|
| 112 |
return {str(predicted.item()): confidence}
|
| 113 |
|
| 114 |
# # 创建Gradio界面
|
|
|
|
| 122 |
|
| 123 |
iface = gr.Interface(
|
| 124 |
fn=classify_image,
|
| 125 |
+
inputs=gr.Sketchpad(type='pil', image_mode='L', brush=gr.Brush(default_size=18), crop_size=(600, 600)),
|
| 126 |
outputs=gr.Label(num_top_classes=1),
|
| 127 |
title="MNIST Digit Classification with ViT",
|
| 128 |
description="Use the mouse to hand draw a number and the model will predict the category it belongs to."
|
| 129 |
)
|
| 130 |
|
| 131 |
|
| 132 |
+
if __name__ == "__main__":
|
| 133 |
+
iface.launch()
|
vit_model.pth
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 3248655
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a4c96b402b7457e05bba3fbf9589f8ee20aaf1bb86a482d4b605ac289cafde68
|
| 3 |
size 3248655
|