Spaces:
Runtime error
Runtime error
Commit
·
b6283c9
1
Parent(s):
4ccbdf9
update
Browse files- tamilatis +0 -1
- tamilatis/configs/config.yaml +7 -0
- tamilatis/configs/dataset/default.yaml +6 -0
- tamilatis/configs/model/default.yaml +5 -0
- tamilatis/configs/training/default.yaml +11 -0
- tamilatis/configs/wandb/default.yaml +3 -0
- tamilatis/dataset.py +120 -0
- tamilatis/main.py +180 -0
- tamilatis/model.py +25 -0
- tamilatis/predict.py +117 -0
- tamilatis/trainer.py +284 -0
tamilatis
DELETED
|
@@ -1 +0,0 @@
|
|
| 1 |
-
Subproject commit b1022a9187d9d47c18b360fc45b7f55d3b40824f
|
|
|
|
|
|
tamilatis/configs/config.yaml
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
defaults:
|
| 2 |
+
- model: default
|
| 3 |
+
- dataset: default
|
| 4 |
+
- training: default
|
| 5 |
+
- wandb: default
|
| 6 |
+
- override hydra/job_logging: colorlog
|
| 7 |
+
- override hydra/hydra_logging: colorlog
|
tamilatis/configs/dataset/default.yaml
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
train_path : "/content/train_intent.pkl"
|
| 2 |
+
valid_path : "/content/val_intent.pkl"
|
| 3 |
+
test_path : "/content/test_intent.pkl"
|
| 4 |
+
output_dir: "/content/saved_models"
|
| 5 |
+
num_labels: 78
|
| 6 |
+
num_intents: 23
|
tamilatis/configs/model/default.yaml
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
tokenizer_name: "xlm-roberta-base"
|
| 2 |
+
model_name: "xlm-roberta-base"
|
| 3 |
+
num_labels: 78
|
| 4 |
+
num_intents: 23
|
| 5 |
+
test_model :
|
tamilatis/configs/training/default.yaml
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
batch_size: 32
|
| 2 |
+
weight_decay: 0.01
|
| 3 |
+
lr: 1e-4
|
| 4 |
+
max_epochs: 20
|
| 5 |
+
patience: 5
|
| 6 |
+
scheduler: "cosine"
|
| 7 |
+
warmup_steps: 0
|
| 8 |
+
do_train: True
|
| 9 |
+
do_predict: False
|
| 10 |
+
ner_cls_path: /content/ner_cls_rlw.csv
|
| 11 |
+
intent_cls_path: /content/intent_cls_rlw.csv
|
tamilatis/configs/wandb/default.yaml
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
project_name: "tamilatis"
|
| 2 |
+
group_name: "hard-parameter-sharing-rlw"
|
| 3 |
+
run_name:
|
tamilatis/dataset.py
ADDED
|
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pickle
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
from torch.utils.data import Dataset
|
| 5 |
+
from tqdm import tqdm
|
| 6 |
+
from transformers import AutoTokenizer
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class BuildDataset:
|
| 10 |
+
def __init__(self):
|
| 11 |
+
pass
|
| 12 |
+
|
| 13 |
+
def tokenize(self, text):
|
| 14 |
+
"""Splits the text and get offsets"""
|
| 15 |
+
text = text.strip()
|
| 16 |
+
tokens = text.split()
|
| 17 |
+
offsets = []
|
| 18 |
+
for token in tokens:
|
| 19 |
+
start_idx = text.find(token)
|
| 20 |
+
end_idx = start_idx + len(token)
|
| 21 |
+
offsets.append([start_idx, end_idx])
|
| 22 |
+
return tokens, offsets
|
| 23 |
+
|
| 24 |
+
def convert_to_boi(self, text, annotations):
|
| 25 |
+
"""Convert Intent Tags to BOI Tags"""
|
| 26 |
+
tokens, offsets = self.tokenize(text)
|
| 27 |
+
boi_tags = ["O"] * len(tokens)
|
| 28 |
+
|
| 29 |
+
for name, value, [start_idx, end_idx] in annotations:
|
| 30 |
+
value = value.strip()
|
| 31 |
+
try:
|
| 32 |
+
token_span = len(value.split())
|
| 33 |
+
|
| 34 |
+
start_token_idx = [
|
| 35 |
+
token_idx
|
| 36 |
+
for token_idx, (s, e) in enumerate(offsets)
|
| 37 |
+
if s == start_idx
|
| 38 |
+
][0]
|
| 39 |
+
end_token_idx = start_token_idx + token_span
|
| 40 |
+
annotation = [name] + ["I" + name[1:]] * (token_span - 1)
|
| 41 |
+
boi_tags[start_token_idx:end_token_idx] = annotation
|
| 42 |
+
except Exception as error:
|
| 43 |
+
pass
|
| 44 |
+
|
| 45 |
+
return list(zip(tokens, boi_tags))
|
| 46 |
+
|
| 47 |
+
def build_dataset(self, path):
|
| 48 |
+
"""Build a TOD dataset"""
|
| 49 |
+
with open(path, "rb") as f:
|
| 50 |
+
data = pickle.load(f)
|
| 51 |
+
|
| 52 |
+
boi_data = []
|
| 53 |
+
for text, annotation, intent in tqdm(data):
|
| 54 |
+
boi_item = self.convert_to_boi(text, annotation)
|
| 55 |
+
is_valid = any([True for token, tag in boi_item if tag != "O"])
|
| 56 |
+
wrong_intent = intent[0] == "B" or intent[0] == "I"
|
| 57 |
+
|
| 58 |
+
if is_valid and not wrong_intent:
|
| 59 |
+
boi_data.append((boi_item, intent))
|
| 60 |
+
return boi_data
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
class ATISDataset(Dataset):
|
| 64 |
+
def __init__(self, data, tokenizer, label_encoder, intent_encoder):
|
| 65 |
+
self.data = data
|
| 66 |
+
self.label_encoder = label_encoder
|
| 67 |
+
self.intent_encoder = intent_encoder
|
| 68 |
+
self.tokenizer = AutoTokenizer.from_pretrained(tokenizer)
|
| 69 |
+
|
| 70 |
+
def __len__(self):
|
| 71 |
+
return len(self.data)
|
| 72 |
+
|
| 73 |
+
def __getitem__(self, idx):
|
| 74 |
+
tokens = [token for token, annotation in self.data[idx][0]]
|
| 75 |
+
tags = [tag for token, tag in self.data[idx][0]]
|
| 76 |
+
|
| 77 |
+
intent_name = self.data[idx][1]
|
| 78 |
+
intent_label = self.intent_encoder.transform([intent_name])
|
| 79 |
+
text = "#".join(tokens)
|
| 80 |
+
|
| 81 |
+
encoding = self.tokenizer(
|
| 82 |
+
tokens,
|
| 83 |
+
max_length=60,
|
| 84 |
+
padding="max_length",
|
| 85 |
+
truncation=True,
|
| 86 |
+
is_split_into_words=True,
|
| 87 |
+
return_tensors="pt",
|
| 88 |
+
)
|
| 89 |
+
|
| 90 |
+
input_ids = encoding.input_ids.squeeze(0)
|
| 91 |
+
attention_mask = encoding.attention_mask.squeeze(0)
|
| 92 |
+
word_ids = encoding.word_ids()
|
| 93 |
+
|
| 94 |
+
tags = self.label_encoder.transform(tags)
|
| 95 |
+
|
| 96 |
+
labels = []
|
| 97 |
+
label_all_tokens = None
|
| 98 |
+
previous_word_idx = None
|
| 99 |
+
|
| 100 |
+
for word_idx in word_ids:
|
| 101 |
+
if word_idx is None:
|
| 102 |
+
labels.append(-100)
|
| 103 |
+
elif word_idx != previous_word_idx:
|
| 104 |
+
labels.append(tags[word_idx])
|
| 105 |
+
else:
|
| 106 |
+
labels.append(tags[word_idx] if label_all_tokens else -100)
|
| 107 |
+
previous_word_idx = word_idx
|
| 108 |
+
|
| 109 |
+
labels = torch.tensor(labels)
|
| 110 |
+
tags = tags.tolist()
|
| 111 |
+
tags.extend([-100] * (50 - len(tags)))
|
| 112 |
+
|
| 113 |
+
return {
|
| 114 |
+
"text": text,
|
| 115 |
+
"input_ids": input_ids,
|
| 116 |
+
"attention_mask": attention_mask,
|
| 117 |
+
"labels": labels,
|
| 118 |
+
"intent": intent_label.item(),
|
| 119 |
+
"tags": tags,
|
| 120 |
+
}
|
tamilatis/main.py
ADDED
|
@@ -0,0 +1,180 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import logging
|
| 2 |
+
import os
|
| 3 |
+
import pickle
|
| 4 |
+
|
| 5 |
+
import wandb
|
| 6 |
+
import hydra
|
| 7 |
+
import pandas as pd
|
| 8 |
+
import torch.nn as nn
|
| 9 |
+
import torch.optim as optim
|
| 10 |
+
from accelerate import Accelerator
|
| 11 |
+
from omegaconf.omegaconf import OmegaConf
|
| 12 |
+
from sklearn.preprocessing import LabelEncoder
|
| 13 |
+
from torch.utils.data import DataLoader
|
| 14 |
+
from transformers import AutoTokenizer, get_scheduler
|
| 15 |
+
|
| 16 |
+
from dataset import ATISDataset, BuildDataset
|
| 17 |
+
from model import JointATISModel
|
| 18 |
+
from predict import TamilATISPredictor
|
| 19 |
+
from trainer import ATISTrainer
|
| 20 |
+
|
| 21 |
+
logger = logging.getLogger(__name__)
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
@hydra.main(config_path="./configs", config_name="config")
|
| 25 |
+
def main(cfg):
|
| 26 |
+
|
| 27 |
+
os.environ['WANDB_PROJECT'] = cfg.wandb.project_name
|
| 28 |
+
os.environ['WANDB_RUN_GROUP'] = cfg.wandb.group_name
|
| 29 |
+
|
| 30 |
+
logger.info(OmegaConf.to_yaml(cfg, resolve=True))
|
| 31 |
+
accelerator = Accelerator()
|
| 32 |
+
# Get all tags
|
| 33 |
+
annotations = set()
|
| 34 |
+
intents = set()
|
| 35 |
+
count = 0
|
| 36 |
+
|
| 37 |
+
logger.info("Building Dataset")
|
| 38 |
+
data_utils = BuildDataset()
|
| 39 |
+
train_data = data_utils.build_dataset(cfg.dataset.train_path)
|
| 40 |
+
valid_data = data_utils.build_dataset(cfg.dataset.valid_path)
|
| 41 |
+
test_data = data_utils.build_dataset(cfg.dataset.test_path)
|
| 42 |
+
|
| 43 |
+
annotations, intents, count = set(), set(), 0
|
| 44 |
+
for boi_data, intent in train_data:
|
| 45 |
+
if intent[0] == "B" or intent[0] == "I":
|
| 46 |
+
count += 1
|
| 47 |
+
intents.add(intent)
|
| 48 |
+
for token, annotation in boi_data:
|
| 49 |
+
annotations.add(annotation)
|
| 50 |
+
|
| 51 |
+
for boi_data, intent in valid_data:
|
| 52 |
+
if intent[0] == "B" or intent[0] == "I":
|
| 53 |
+
count += 1
|
| 54 |
+
intents.add(intent)
|
| 55 |
+
for token, annotation in boi_data:
|
| 56 |
+
annotations.add(annotation)
|
| 57 |
+
|
| 58 |
+
for boi_data, intent in test_data:
|
| 59 |
+
if intent[0] == "B" or intent[0] == "I":
|
| 60 |
+
count += 1
|
| 61 |
+
intents.add(intent)
|
| 62 |
+
for token, annotation in boi_data:
|
| 63 |
+
annotations.add(annotation)
|
| 64 |
+
|
| 65 |
+
annotations = list(annotations)
|
| 66 |
+
intents = list(intents)
|
| 67 |
+
|
| 68 |
+
# convert string labels to int
|
| 69 |
+
label_encoder = LabelEncoder()
|
| 70 |
+
label_encoder.fit(annotations)
|
| 71 |
+
|
| 72 |
+
intent_encoder = LabelEncoder()
|
| 73 |
+
intent_encoder.fit(intents)
|
| 74 |
+
|
| 75 |
+
train_ds = ATISDataset(
|
| 76 |
+
train_data, cfg.model.tokenizer_name, label_encoder, intent_encoder
|
| 77 |
+
)
|
| 78 |
+
val_ds = ATISDataset(
|
| 79 |
+
valid_data, cfg.model.tokenizer_name, label_encoder, intent_encoder
|
| 80 |
+
)
|
| 81 |
+
test_ds = ATISDataset(
|
| 82 |
+
test_data, cfg.model.tokenizer_name, label_encoder, intent_encoder
|
| 83 |
+
)
|
| 84 |
+
|
| 85 |
+
train_dl = DataLoader(train_ds, batch_size=cfg.training.batch_size, pin_memory=True)
|
| 86 |
+
val_dl = DataLoader(val_ds, batch_size=cfg.training.batch_size * 2, pin_memory=True)
|
| 87 |
+
test_dl = DataLoader(
|
| 88 |
+
test_ds, batch_size=cfg.training.batch_size * 2, pin_memory=True
|
| 89 |
+
)
|
| 90 |
+
logging.info("DataLoaders are created!")
|
| 91 |
+
|
| 92 |
+
model = JointATISModel(
|
| 93 |
+
cfg.model.model_name, cfg.model.num_labels, cfg.model.num_intents
|
| 94 |
+
)
|
| 95 |
+
criterion = nn.CrossEntropyLoss()
|
| 96 |
+
# Optimizer
|
| 97 |
+
# Split weights in two groups, one with weight decay and the other not.
|
| 98 |
+
no_decay = ["bias", "LayerNorm.weight"]
|
| 99 |
+
optimizer_grouped_parameters = [
|
| 100 |
+
{
|
| 101 |
+
"params": [
|
| 102 |
+
p
|
| 103 |
+
for n, p in model.named_parameters()
|
| 104 |
+
if not any(nd in n for nd in no_decay)
|
| 105 |
+
],
|
| 106 |
+
"weight_decay": cfg.training.weight_decay,
|
| 107 |
+
},
|
| 108 |
+
{
|
| 109 |
+
"params": [
|
| 110 |
+
p
|
| 111 |
+
for n, p in model.named_parameters()
|
| 112 |
+
if any(nd in n for nd in no_decay)
|
| 113 |
+
],
|
| 114 |
+
"weight_decay": 0.0,
|
| 115 |
+
},
|
| 116 |
+
]
|
| 117 |
+
optimizer = optim.AdamW(optimizer_grouped_parameters, lr=cfg.training.lr)
|
| 118 |
+
nb_train_steps = int(
|
| 119 |
+
len(train_dl) / cfg.training.batch_size * cfg.training.max_epochs
|
| 120 |
+
)
|
| 121 |
+
|
| 122 |
+
if cfg.training.scheduler is not None:
|
| 123 |
+
scheduler = get_scheduler(
|
| 124 |
+
cfg.training.scheduler,
|
| 125 |
+
optimizer,
|
| 126 |
+
num_warmup_steps=cfg.training.warmup_steps,
|
| 127 |
+
num_training_steps=nb_train_steps)
|
| 128 |
+
# Register the LR scheduler
|
| 129 |
+
accelerator.register_for_checkpointing(scheduler)
|
| 130 |
+
|
| 131 |
+
scheduler = None
|
| 132 |
+
model, optimizer, train_dl, val_dl = accelerator.prepare(
|
| 133 |
+
model, optimizer, train_dl, val_dl
|
| 134 |
+
)
|
| 135 |
+
|
| 136 |
+
run = wandb.init(cfg.wandb.project_name,cfg.wandb.group_name,cfg.wandb.run_name)
|
| 137 |
+
if cfg.training.do_train:
|
| 138 |
+
trainer = ATISTrainer(
|
| 139 |
+
model,
|
| 140 |
+
optimizer,
|
| 141 |
+
scheduler,
|
| 142 |
+
criterion,
|
| 143 |
+
accelerator,
|
| 144 |
+
cfg.dataset.output_dir,
|
| 145 |
+
cfg.dataset.num_labels,
|
| 146 |
+
cfg.dataset.num_intents,
|
| 147 |
+
run
|
| 148 |
+
)
|
| 149 |
+
best_model, best_loss = trainer.fit(
|
| 150 |
+
cfg.training.max_epochs, train_dl, val_dl, cfg.training.patience
|
| 151 |
+
)
|
| 152 |
+
model_dir = f"{cfg.dataset.output_dir}/model_{best_loss}"
|
| 153 |
+
if not os.path.exists(model_dir):
|
| 154 |
+
os.makedirs(model_dir)
|
| 155 |
+
best_model.save_pretrained(model_dir, push_to_hub=False)
|
| 156 |
+
logging.info(
|
| 157 |
+
f"The Best model with validation loss {best_loss} is saved in {model_dir}"
|
| 158 |
+
)
|
| 159 |
+
if cfg.training.do_predict:
|
| 160 |
+
predictor = TamilATISPredictor(
|
| 161 |
+
model,
|
| 162 |
+
cfg.model.test_model,
|
| 163 |
+
cfg.model.tokenizer_name,
|
| 164 |
+
label_encoder,
|
| 165 |
+
intent_encoder,
|
| 166 |
+
cfg.model.num_labels,
|
| 167 |
+
)
|
| 168 |
+
outputs, intents = predictor.predict_test_data(test_data)
|
| 169 |
+
ner_cls_rep, intent_cls_rep = predictor.evaluate(outputs, intents)
|
| 170 |
+
ner_cls_df = pd.DataFrame(ner_cls_rep).transpose()
|
| 171 |
+
intent_cls_df = pd.DataFrame(intent_cls_rep).transpose()
|
| 172 |
+
ner_cls_df.to_csv(cfg.training.ner_cls_path)
|
| 173 |
+
intent_cls_df.to_csv(cfg.training.intent_cls_path)
|
| 174 |
+
logging.info(
|
| 175 |
+
f"Classification reports of intents and slots are saved in {cfg.training.ner_cls_path} and {cfg.training.intent_cls_path}"
|
| 176 |
+
)
|
| 177 |
+
|
| 178 |
+
|
| 179 |
+
if __name__ == "__main__":
|
| 180 |
+
main()
|
tamilatis/model.py
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch.nn as nn
|
| 2 |
+
from huggingface_hub import PyTorchModelHubMixin
|
| 3 |
+
from transformers import AutoConfig, AutoModelForTokenClassification
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
class JointATISModel(nn.Module, PyTorchModelHubMixin):
|
| 7 |
+
def __init__(self, model_name, num_labels, num_intents):
|
| 8 |
+
super().__init__()
|
| 9 |
+
self.model = AutoModelForTokenClassification.from_pretrained(
|
| 10 |
+
model_name, num_labels=num_labels
|
| 11 |
+
)
|
| 12 |
+
self.model_config = AutoConfig.from_pretrained(model_name)
|
| 13 |
+
self.intent_head = nn.Linear(self.model_config.hidden_size, num_intents)
|
| 14 |
+
|
| 15 |
+
def forward(self, input_ids, attention_mask, labels):
|
| 16 |
+
outputs = self.model(
|
| 17 |
+
input_ids, attention_mask, labels=labels, output_hidden_states=True
|
| 18 |
+
)
|
| 19 |
+
pooled_output = outputs["hidden_states"][-1][:, 0, :]
|
| 20 |
+
intent_logits = self.intent_head(pooled_output)
|
| 21 |
+
return {
|
| 22 |
+
"dst_logits": outputs.logits,
|
| 23 |
+
"intent_loss": intent_logits,
|
| 24 |
+
"dst_loss": outputs.loss,
|
| 25 |
+
}
|
tamilatis/predict.py
ADDED
|
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import torch
|
| 3 |
+
from tqdm import tqdm
|
| 4 |
+
from transformers import AutoTokenizer
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class TamilATISPredictor:
|
| 9 |
+
def __init__(
|
| 10 |
+
self,
|
| 11 |
+
model,
|
| 12 |
+
checkpoint_path,
|
| 13 |
+
tokenizer,
|
| 14 |
+
label_encoder,
|
| 15 |
+
intent_encoder,
|
| 16 |
+
num_labels,
|
| 17 |
+
):
|
| 18 |
+
self.model = model
|
| 19 |
+
self.model.load_state_dict(torch.load(checkpoint_path))
|
| 20 |
+
self.model.eval()
|
| 21 |
+
self.tokenizer = AutoTokenizer.from_pretrained(tokenizer)
|
| 22 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 23 |
+
self.num_labels = num_labels
|
| 24 |
+
self.label_encoder = label_encoder
|
| 25 |
+
self.intent_encoder = intent_encoder
|
| 26 |
+
|
| 27 |
+
def get_predictions(self, text):
|
| 28 |
+
|
| 29 |
+
inputs = self.tokenizer(
|
| 30 |
+
text.split(),
|
| 31 |
+
is_split_into_words=True,
|
| 32 |
+
return_offsets_mapping=True,
|
| 33 |
+
padding="max_length",
|
| 34 |
+
truncation=True,
|
| 35 |
+
max_length=60,
|
| 36 |
+
return_tensors="pt",
|
| 37 |
+
)
|
| 38 |
+
ids = inputs["input_ids"].to(self.device)
|
| 39 |
+
mask = inputs["attention_mask"].to(self.device)
|
| 40 |
+
|
| 41 |
+
# forward pass
|
| 42 |
+
loss_dict = self.model(input_ids=ids, attention_mask=mask, labels=None)
|
| 43 |
+
slot_logits, intent_logits, slot_loss = (
|
| 44 |
+
loss_dict["dst_logits"],
|
| 45 |
+
loss_dict["intent_loss"],
|
| 46 |
+
loss_dict["dst_loss"],
|
| 47 |
+
)
|
| 48 |
+
|
| 49 |
+
active_logits = slot_logits.view(
|
| 50 |
+
-1, self.num_labels
|
| 51 |
+
) # shape (batch_size * seq_len, num_labels)
|
| 52 |
+
flattened_predictions = torch.argmax(
|
| 53 |
+
active_logits, axis=1
|
| 54 |
+
) # shape (batch_size*seq_len,) - predictions at the token level
|
| 55 |
+
tokens = self.tokenizer.convert_ids_to_tokens(ids.squeeze().tolist())
|
| 56 |
+
token_predictions = self.label_encoder.inverse_transform(
|
| 57 |
+
[i for i in flattened_predictions.cpu().numpy()]
|
| 58 |
+
)
|
| 59 |
+
wp_preds = list(
|
| 60 |
+
zip(tokens, token_predictions)
|
| 61 |
+
) # list of tuples. Each tuple = (wordpiece, prediction)
|
| 62 |
+
|
| 63 |
+
slot_prediction = []
|
| 64 |
+
for token_pred, mapping in zip(
|
| 65 |
+
wp_preds, inputs["offset_mapping"].squeeze().tolist()
|
| 66 |
+
):
|
| 67 |
+
# only predictions on first word pieces are important
|
| 68 |
+
if mapping[0] == 0 and mapping[1] != 0 and token_pred[0] != "▁":
|
| 69 |
+
slot_prediction.append(token_pred[1])
|
| 70 |
+
else:
|
| 71 |
+
continue
|
| 72 |
+
intent_preds = torch.argmax(intent_logits, axis=1)
|
| 73 |
+
intent_preds = self.intent_encoder.inverse_transform(intent_preds.cpu().numpy())
|
| 74 |
+
|
| 75 |
+
return intent_preds, slot_prediction
|
| 76 |
+
|
| 77 |
+
def predict_test_data(self, test_data):
|
| 78 |
+
outputs = []
|
| 79 |
+
intents = []
|
| 80 |
+
|
| 81 |
+
for item, intent in tqdm(test_data):
|
| 82 |
+
try:
|
| 83 |
+
tokens = [token for token, tag in item]
|
| 84 |
+
tags = [tag for token, tag in item]
|
| 85 |
+
text = " ".join(tokens)
|
| 86 |
+
intent_preds, slot_preds = self.get_predictions(text)
|
| 87 |
+
outputs.append((tags, slot_preds))
|
| 88 |
+
intents.append((intent, intent_preds.item()))
|
| 89 |
+
except Exception as error:
|
| 90 |
+
print(error)
|
| 91 |
+
return outputs, intents
|
| 92 |
+
|
| 93 |
+
def evaluate(self, outputs, intents):
|
| 94 |
+
for output in tqdm(outputs):
|
| 95 |
+
assert len(output[0]) == len(output[1])
|
| 96 |
+
y_true = [output[0] for output in outputs]
|
| 97 |
+
y_pred = [output[1] for output in outputs]
|
| 98 |
+
from seqeval.metrics import classification_report
|
| 99 |
+
|
| 100 |
+
ner_cls_rep = classification_report(y_true, y_pred, output_dict=True)
|
| 101 |
+
from sklearn.metrics import classification_report
|
| 102 |
+
|
| 103 |
+
# Compute metrics for intent
|
| 104 |
+
y_true = self.intent_encoder.transform(
|
| 105 |
+
[output[0] for output in intents]
|
| 106 |
+
).tolist()
|
| 107 |
+
y_pred = self.intent_encoder.transform(
|
| 108 |
+
[output[1] for output in intents]
|
| 109 |
+
).tolist()
|
| 110 |
+
|
| 111 |
+
target_names = self.intent_encoder.classes_.tolist()
|
| 112 |
+
target_names = [target_names[idx] for idx in np.unique(y_true + y_pred)]
|
| 113 |
+
intent_cls_rep = classification_report(
|
| 114 |
+
y_true, y_pred, target_names=target_names, output_dict=True
|
| 115 |
+
)
|
| 116 |
+
|
| 117 |
+
return ner_cls_rep, intent_cls_rep
|
tamilatis/trainer.py
ADDED
|
@@ -0,0 +1,284 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import logging
|
| 2 |
+
import os
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
import torch.nn.functional as F
|
| 7 |
+
import wandb
|
| 8 |
+
from torchmetrics.functional import accuracy, f1_score, precision, recall
|
| 9 |
+
from tqdm import tqdm, trange
|
| 10 |
+
|
| 11 |
+
logger = logging.getLogger(__name__)
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
class ATISTrainer:
|
| 15 |
+
"""A Trainer class consists of utitlity functions for training the model"""
|
| 16 |
+
def __init__(
|
| 17 |
+
self,
|
| 18 |
+
model,
|
| 19 |
+
optimizer,
|
| 20 |
+
scheduler,
|
| 21 |
+
criterion,
|
| 22 |
+
accelerate,
|
| 23 |
+
output_dir,
|
| 24 |
+
num_labels,
|
| 25 |
+
num_intents,
|
| 26 |
+
run
|
| 27 |
+
):
|
| 28 |
+
self.model = model
|
| 29 |
+
self.criterion = criterion
|
| 30 |
+
self.optimizer = optimizer
|
| 31 |
+
self.scheduler = scheduler
|
| 32 |
+
self.accelerator = accelerate
|
| 33 |
+
self.output_dir = output_dir
|
| 34 |
+
self.num_labels = num_labels
|
| 35 |
+
self.num_intents = num_intents
|
| 36 |
+
|
| 37 |
+
if not os.path.exists(self.output_dir):
|
| 38 |
+
os.makedirs(self.output_dir)
|
| 39 |
+
|
| 40 |
+
self.run = run
|
| 41 |
+
logging.info(f"Strating Training, outputs are saved in {self.output_dir}")
|
| 42 |
+
|
| 43 |
+
def train_step(self, iterator):
|
| 44 |
+
training_progress_bar = tqdm(iterator, desc="training")
|
| 45 |
+
for batch in training_progress_bar:
|
| 46 |
+
input_ids, attention_mask, labels, intents = (
|
| 47 |
+
batch["input_ids"],
|
| 48 |
+
batch["attention_mask"],
|
| 49 |
+
batch["labels"],
|
| 50 |
+
batch["intent"],
|
| 51 |
+
)
|
| 52 |
+
self.optimizer.zero_grad()
|
| 53 |
+
loss_dict = self.model(input_ids, attention_mask, labels)
|
| 54 |
+
slot_logits, intent_logits, slot_loss = (
|
| 55 |
+
loss_dict["dst_logits"],
|
| 56 |
+
loss_dict["intent_loss"],
|
| 57 |
+
loss_dict["dst_loss"],
|
| 58 |
+
)
|
| 59 |
+
|
| 60 |
+
# compute training accuracy for slots
|
| 61 |
+
flattened_target_labels = batch["labels"].view(
|
| 62 |
+
-1
|
| 63 |
+
) # [batch_size * seq_len, ]
|
| 64 |
+
active_logits = slot_logits.view(
|
| 65 |
+
-1, self.num_labels
|
| 66 |
+
) # [batch_size* seq_len, num_labels]
|
| 67 |
+
flattened_preds = torch.argmax(
|
| 68 |
+
active_logits, axis=-1
|
| 69 |
+
) # [batch_size * seq_len,]
|
| 70 |
+
|
| 71 |
+
# compute accuracy at active labels
|
| 72 |
+
active_accuracy = (
|
| 73 |
+
batch["labels"].view(-1) != -100
|
| 74 |
+
) # [batch_size * seq_len, ]
|
| 75 |
+
|
| 76 |
+
slot_labels = torch.masked_select(flattened_target_labels, active_accuracy)
|
| 77 |
+
slot_preds = torch.masked_select(flattened_preds, active_accuracy)
|
| 78 |
+
|
| 79 |
+
# compute loss for intents
|
| 80 |
+
#use rlw
|
| 81 |
+
intent_loss = self.criterion(intent_logits, batch["intent"])
|
| 82 |
+
weight = F.softmax(torch.randn(1), dim=-1) # RLW is only this!
|
| 83 |
+
intent_loss = torch.sum(intent_loss*weight.cuda())
|
| 84 |
+
intent_preds = torch.argmax(intent_logits, axis=1)
|
| 85 |
+
train_loss = slot_loss + intent_loss
|
| 86 |
+
self.accelerator.backward(train_loss)
|
| 87 |
+
self.optimizer.step()
|
| 88 |
+
|
| 89 |
+
if self.scheduler is not None:
|
| 90 |
+
if not self.accelerator.optimizer_step_was_skipped:
|
| 91 |
+
self.scheduler.step()
|
| 92 |
+
|
| 93 |
+
if self.scheduler is not None:
|
| 94 |
+
self.scheduler.step()
|
| 95 |
+
|
| 96 |
+
intent_acc = accuracy(
|
| 97 |
+
intent_preds, intents, num_classes=self.num_intents, average="weighted"
|
| 98 |
+
)
|
| 99 |
+
intent_f1 = f1_score(
|
| 100 |
+
intent_preds, intents, num_classes=self.num_intents, average="weighted"
|
| 101 |
+
)
|
| 102 |
+
intent_rec = recall(
|
| 103 |
+
intent_preds, intents, num_classes=self.num_intents, average="weighted"
|
| 104 |
+
)
|
| 105 |
+
intent_prec = precision(
|
| 106 |
+
intent_preds, intents, num_classes=self.num_intents, average="weighted"
|
| 107 |
+
)
|
| 108 |
+
|
| 109 |
+
slot_acc = accuracy(
|
| 110 |
+
slot_preds, slot_labels, num_classes=self.num_labels, average="weighted"
|
| 111 |
+
)
|
| 112 |
+
slot_f1 = f1_score(
|
| 113 |
+
slot_preds, slot_labels, num_classes=self.num_labels, average="weighted"
|
| 114 |
+
)
|
| 115 |
+
slot_rec = recall(
|
| 116 |
+
slot_preds, slot_labels, num_classes=self.num_labels, average="weighted"
|
| 117 |
+
)
|
| 118 |
+
slot_prec = precision(
|
| 119 |
+
slot_preds, slot_labels, num_classes=self.num_labels, average="weighted"
|
| 120 |
+
)
|
| 121 |
+
|
| 122 |
+
self.run.log(
|
| 123 |
+
{
|
| 124 |
+
"train_loss_step": train_loss.cpu().detach().numpy(),
|
| 125 |
+
"train_intent_acc_step": intent_acc,
|
| 126 |
+
"train_intent_f1_step": intent_f1,
|
| 127 |
+
"train_slot_acc_step": slot_acc,
|
| 128 |
+
"train_slot_f1_step": slot_f1,
|
| 129 |
+
}
|
| 130 |
+
)
|
| 131 |
+
# logging.info({"train_loss_step": train_loss, "train_intent_acc_step": intent_acc, "train_intent_f1_step": intent_f1, "train_slot_acc_step": slot_acc, "train_slot_f1_step": slot_f1 })
|
| 132 |
+
|
| 133 |
+
return {
|
| 134 |
+
"train_loss_epoch": train_loss / len(iterator),
|
| 135 |
+
"train_intent_f1_epoch": intent_f1 / len(iterator),
|
| 136 |
+
"train_intent_acc_epoch": intent_acc / len(iterator),
|
| 137 |
+
"train_slot_f1_epoch": slot_f1 / len(iterator),
|
| 138 |
+
"train_slot_acc_epoch": slot_acc / len(iterator),
|
| 139 |
+
}
|
| 140 |
+
|
| 141 |
+
@torch.no_grad()
|
| 142 |
+
def eval_step(self, iterator):
|
| 143 |
+
eval_progress_bar = tqdm(iterator, desc="Evaluating")
|
| 144 |
+
for batch in eval_progress_bar:
|
| 145 |
+
input_ids, attention_mask, labels, intents = (
|
| 146 |
+
batch["input_ids"],
|
| 147 |
+
batch["attention_mask"],
|
| 148 |
+
batch["labels"],
|
| 149 |
+
batch["intent"],
|
| 150 |
+
)
|
| 151 |
+
loss_dict = self.model(input_ids, attention_mask, labels)
|
| 152 |
+
slot_logits, intent_logits, slot_loss = (
|
| 153 |
+
loss_dict["dst_logits"],
|
| 154 |
+
loss_dict["intent_loss"],
|
| 155 |
+
loss_dict["dst_loss"],
|
| 156 |
+
)
|
| 157 |
+
# compute training accuracy for slots
|
| 158 |
+
flattened_target_labels = batch["labels"].view(
|
| 159 |
+
-1
|
| 160 |
+
) # [batch_size * seq_len, ]
|
| 161 |
+
active_logits = slot_logits.view(
|
| 162 |
+
-1, self.num_labels
|
| 163 |
+
) # [batch_size* seq_len, num_labels]
|
| 164 |
+
flattened_preds = torch.argmax(
|
| 165 |
+
active_logits, axis=-1
|
| 166 |
+
) # [batch_size * seq_len,]
|
| 167 |
+
|
| 168 |
+
# compute accuracy at active labels
|
| 169 |
+
active_accuracy = (
|
| 170 |
+
batch["labels"].view(-1) != -100
|
| 171 |
+
) # [batch_size * seq_len, ]
|
| 172 |
+
|
| 173 |
+
slot_labels = torch.masked_select(flattened_target_labels, active_accuracy)
|
| 174 |
+
slot_preds = torch.masked_select(flattened_preds, active_accuracy)
|
| 175 |
+
|
| 176 |
+
# compute loss for intents
|
| 177 |
+
intent_loss = self.criterion(intent_logits, batch["intent"])
|
| 178 |
+
weight = F.softmax(torch.randn(1), dim=-1) # RLW is only this!
|
| 179 |
+
intent_loss = torch.sum(intent_loss*weight.cuda())
|
| 180 |
+
|
| 181 |
+
intent_preds = torch.argmax(intent_logits, axis=1)
|
| 182 |
+
eval_loss = slot_loss + intent_loss
|
| 183 |
+
|
| 184 |
+
intent_acc = accuracy(
|
| 185 |
+
intent_preds, intents, num_classes=self.num_intents, average="weighted"
|
| 186 |
+
)
|
| 187 |
+
intent_f1 = f1_score(
|
| 188 |
+
intent_preds, intents, num_classes=self.num_intents, average="weighted"
|
| 189 |
+
)
|
| 190 |
+
intent_rec = recall(
|
| 191 |
+
intent_preds, intents, num_classes=self.num_intents, average="weighted"
|
| 192 |
+
)
|
| 193 |
+
intent_prec = precision(
|
| 194 |
+
intent_preds, intents, num_classes=self.num_intents, average="weighted"
|
| 195 |
+
)
|
| 196 |
+
|
| 197 |
+
slot_acc = accuracy(
|
| 198 |
+
slot_preds, slot_labels, num_classes=self.num_labels, average="weighted"
|
| 199 |
+
)
|
| 200 |
+
slot_f1 = f1_score(
|
| 201 |
+
slot_preds, slot_labels, num_classes=self.num_labels, average="weighted"
|
| 202 |
+
)
|
| 203 |
+
slot_rec = recall(
|
| 204 |
+
slot_preds, slot_labels, num_classes=self.num_labels, average="weighted"
|
| 205 |
+
)
|
| 206 |
+
slot_prec = precision(
|
| 207 |
+
slot_preds, slot_labels, num_classes=self.num_labels, average="weighted"
|
| 208 |
+
)
|
| 209 |
+
|
| 210 |
+
self.run.log(
|
| 211 |
+
{
|
| 212 |
+
"eval_loss_step": eval_loss,
|
| 213 |
+
"eval_intent_acc_step": intent_acc,
|
| 214 |
+
"eval_intent_f1_step": intent_f1,
|
| 215 |
+
"eval_slot_acc_step": slot_acc,
|
| 216 |
+
"eval_slot_f1_step": slot_f1,
|
| 217 |
+
}
|
| 218 |
+
)
|
| 219 |
+
|
| 220 |
+
return {
|
| 221 |
+
"eval_loss_epoch": eval_loss / len(iterator),
|
| 222 |
+
"eval_intent_f1_epoch": intent_f1 / len(iterator),
|
| 223 |
+
"eval_intent_acc_epoch": intent_acc / len(iterator),
|
| 224 |
+
"eval_slot_f1_epoch": slot_f1 / len(iterator),
|
| 225 |
+
"eval_slot_acc_epoch": slot_acc / len(iterator),
|
| 226 |
+
}
|
| 227 |
+
|
| 228 |
+
def fit(self, n_epochs, train_dataloader, eval_dataloader, patience):
|
| 229 |
+
best_eval_loss = float("inf")
|
| 230 |
+
pbar = trange(n_epochs)
|
| 231 |
+
|
| 232 |
+
for epoch in pbar:
|
| 233 |
+
train_metrics_dict = self.train_step(train_dataloader)
|
| 234 |
+
eval_metrics_dict = self.eval_step(eval_dataloader)
|
| 235 |
+
# access all the values from the dicts
|
| 236 |
+
train_loss, eval_loss = (
|
| 237 |
+
train_metrics_dict["train_loss_epoch"],
|
| 238 |
+
eval_metrics_dict["eval_loss_epoch"],
|
| 239 |
+
)
|
| 240 |
+
train_intent_f1, eval_intent_f1 = (
|
| 241 |
+
train_metrics_dict["train_intent_f1_epoch"],
|
| 242 |
+
eval_metrics_dict["eval_intent_f1_epoch"],
|
| 243 |
+
)
|
| 244 |
+
train_intent_acc, eval_intent_acc = (
|
| 245 |
+
train_metrics_dict["train_intent_acc_epoch"],
|
| 246 |
+
eval_metrics_dict["eval_intent_acc_epoch"],
|
| 247 |
+
)
|
| 248 |
+
train_slot_f1, eval_slot_f1 = (
|
| 249 |
+
train_metrics_dict["train_intent_acc_epoch"],
|
| 250 |
+
eval_metrics_dict["eval_intent_acc_epoch"],
|
| 251 |
+
)
|
| 252 |
+
train_slot_acc, eval_slot_acc = (
|
| 253 |
+
train_metrics_dict["train_slot_acc_epoch"],
|
| 254 |
+
eval_metrics_dict["eval_slot_acc_epoch"],
|
| 255 |
+
)
|
| 256 |
+
|
| 257 |
+
|
| 258 |
+
if eval_loss < best_eval_loss:
|
| 259 |
+
best_model = self.model
|
| 260 |
+
best_eval_loss = eval_loss
|
| 261 |
+
|
| 262 |
+
train_logs = {
|
| 263 |
+
"epoch": epoch,
|
| 264 |
+
"train_loss": train_loss,
|
| 265 |
+
"eval_loss": eval_loss,
|
| 266 |
+
"train_intent_acc": train_intent_acc,
|
| 267 |
+
"train_intent_f1": train_intent_f1,
|
| 268 |
+
"eval_intent_f1": eval_intent_f1,
|
| 269 |
+
"eval_intent_acc": eval_intent_acc,
|
| 270 |
+
"train_slot_f1": train_slot_f1,
|
| 271 |
+
"train_slot_acc": train_slot_acc,
|
| 272 |
+
"lr": {self.optimizer.param_groups[0]["lr"]: 0.2},
|
| 273 |
+
}
|
| 274 |
+
|
| 275 |
+
train_logs["patience"] = patience
|
| 276 |
+
logging.info(train_logs)
|
| 277 |
+
logging.info(eval_metrics_dict)
|
| 278 |
+
|
| 279 |
+
self.accelerator.wait_for_everyone()
|
| 280 |
+
model = self.accelerator.unwrap_model(self.model)
|
| 281 |
+
self.accelerator.save_state(self.output_dir)
|
| 282 |
+
logging.info(f"Checkpoint is saved in {self.output_dir}")
|
| 283 |
+
|
| 284 |
+
return best_model, best_eval_loss
|