Spaces:
Running
on
Zero
Running
on
Zero
Updated packages. Improve hierarchy vis. Better models - mixedbread and phi3. Now option to split texts into sentences before modelling.
04a15c5
| import os | |
| from bertopic.representation import LlamaCPP | |
| from llama_cpp import Llama | |
| from pydantic import BaseModel | |
| import torch.cuda | |
| from huggingface_hub import hf_hub_download, snapshot_download | |
| from bertopic.representation import KeyBERTInspired, MaximalMarginalRelevance, BaseRepresentation | |
| from funcs.prompts import capybara_prompt, capybara_start, open_hermes_prompt, open_hermes_start, stablelm_prompt, stablelm_start, phi3_prompt, phi3_start | |
| random_seed = 42 | |
| chosen_prompt = phi3_prompt #open_hermes_prompt # stablelm_prompt | |
| chosen_start_tag = phi3_start #open_hermes_start # stablelm_start | |
| # Currently set n_gpu_layers to 0 even with cuda due to persistent bugs in implementation with cuda | |
| if torch.cuda.is_available(): | |
| torch_device = "gpu" | |
| low_resource_mode = "No" | |
| n_gpu_layers = 100 | |
| else: | |
| torch_device = "cpu" | |
| low_resource_mode = "Yes" | |
| n_gpu_layers = 0 | |
| #low_resource_mode = "No" # Override for testing | |
| #print("Running on device:", torch_device) | |
| n_threads = torch.get_num_threads() | |
| print("CPU n_threads:", n_threads) | |
| # Default Model parameters | |
| temperature: float = 0.1 | |
| top_k: int = 3 | |
| top_p: float = 1 | |
| repeat_penalty: float = 1.1 | |
| last_n_tokens_size: int = 128 | |
| max_tokens: int = 500 | |
| seed: int = 42 | |
| reset: bool = True | |
| stream: bool = False | |
| n_threads: int = n_threads | |
| n_batch:int = 256 | |
| n_ctx:int = 8192 #4096. # Set to 8192 just to avoid any exceeded context window issues | |
| sample:bool = True | |
| trust_remote_code:bool =True | |
| class LLamacppInitConfigGpu(BaseModel): | |
| last_n_tokens_size: int | |
| seed: int | |
| n_threads: int | |
| n_batch: int | |
| n_ctx: int | |
| n_gpu_layers: int | |
| temperature: float | |
| top_k: int | |
| top_p: float | |
| repeat_penalty: float | |
| max_tokens: int | |
| reset: bool | |
| stream: bool | |
| stop: str | |
| trust_remote_code:bool | |
| def update_gpu(self, new_value: int): | |
| self.n_gpu_layers = new_value | |
| llm_config = LLamacppInitConfigGpu(last_n_tokens_size=last_n_tokens_size, | |
| seed=seed, | |
| n_threads=n_threads, | |
| n_batch=n_batch, | |
| n_ctx=n_ctx, | |
| n_gpu_layers=n_gpu_layers, | |
| temperature=temperature, | |
| top_k=top_k, | |
| top_p=top_p, | |
| repeat_penalty=repeat_penalty, | |
| max_tokens=max_tokens, | |
| reset=reset, | |
| stream=stream, | |
| stop=chosen_start_tag, | |
| trust_remote_code=trust_remote_code) | |
| ## Create representation model parameters ## | |
| # KeyBERT | |
| keybert = KeyBERTInspired(random_state=random_seed) | |
| # MMR | |
| mmr = MaximalMarginalRelevance(diversity=0.5) | |
| base_rep = BaseRepresentation() | |
| # Find model file | |
| def find_model_file(hf_model_name, hf_model_file, search_folder, sub_folder): | |
| hf_loc = search_folder #os.environ["HF_HOME"] | |
| hf_sub_loc = search_folder + sub_folder #os.environ["HF_HOME"] | |
| if sub_folder == "/hub/": | |
| hf_model_name_path = hf_sub_loc + 'models--' + hf_model_name.replace("/","--") | |
| else: | |
| hf_model_name_path = hf_sub_loc | |
| def find_file(root_folder, file_name): | |
| for root, dirs, files in os.walk(root_folder): | |
| if file_name in files: | |
| return os.path.join(root, file_name) | |
| return None | |
| # Example usage | |
| folder_path = hf_model_name_path # Replace with your folder path | |
| file_to_find = hf_model_file # Replace with the file name you're looking for | |
| print("Searching for model file", hf_model_file, "in:", hf_model_name_path) | |
| found_file = find_file(folder_path, file_to_find) # os.environ["HF_HOME"] | |
| return found_file | |
| def create_representation_model(representation_type, llm_config, hf_model_name, hf_model_file, chosen_start_tag, low_resource_mode): | |
| if representation_type == "LLM": | |
| print("Generating LLM representation") | |
| # Use llama.cpp to load in model | |
| # del os.environ["HF_HOME"] | |
| # Check for HF_HOME environment variable and supply a default value if it's not found (typical location for huggingface models) | |
| # Get HF_HOME environment variable or default to "~/.cache/huggingface/hub" | |
| base_folder = "model" #"~/.cache/huggingface/hub" | |
| hf_home_value = os.getenv("HF_HOME", base_folder) | |
| # Expand the user symbol '~' to the full home directory path | |
| if "~" in base_folder: | |
| hf_home_value = os.path.expanduser(hf_home_value) | |
| # Check if the directory exists, create it if it doesn't | |
| if not os.path.exists(hf_home_value): | |
| os.makedirs(hf_home_value) | |
| print("Searching base folder for model:", hf_home_value) | |
| found_file = find_model_file(hf_model_name, hf_model_file, hf_home_value, "/rep/") | |
| if found_file: | |
| print(f"Model file found in model folder: {found_file}") | |
| else: | |
| found_file = find_model_file(hf_model_name, hf_model_file, hf_home_value, "/hub/") | |
| if not found_file: | |
| error = "File not found in HF hub directory or in local model file." | |
| print(error, " Downloading model from hub") | |
| found_file = hf_hub_download(repo_id=hf_model_name, filename=hf_model_file)#, local_dir=hf_home_value) # cache_dir | |
| print("Downloaded model from Huggingface Hub to: ", found_file) | |
| print("Loading representation model with", llm_config.n_gpu_layers, "layers allocated to GPU.") | |
| llm = Llama(model_path=found_file, stop=chosen_start_tag, n_gpu_layers=llm_config.n_gpu_layers, n_ctx=llm_config.n_ctx,seed=seed) #**llm_config.model_dump())# rope_freq_scale=0.5, | |
| #print(llm.n_gpu_layers) | |
| print("Chosen prompt:", chosen_prompt) | |
| llm_model = LlamaCPP(llm, prompt=chosen_prompt)#, **gen_config.model_dump()) | |
| # All representation models | |
| representation_model = { | |
| "LLM": llm_model | |
| } | |
| elif representation_type == "KeyBERT": | |
| print("Generating KeyBERT representation") | |
| #representation_model = {"mmr": mmr} | |
| representation_model = {"KeyBERT": keybert} | |
| elif representation_type == "MMR": | |
| print("Generating MMR representation") | |
| representation_model = {"MMR": mmr} | |
| else: | |
| print("Generating default representation type") | |
| representation_model = {"Default":base_rep} | |
| # Deprecated example using CTransformers. This package is not really used anymore | |
| #model = AutoModelForCausalLM.from_pretrained('NousResearch/Nous-Capybara-7B-V1.9-GGUF', model_type='mistral', model_file='Capybara-7B-V1.9-Q5_K_M.gguf', hf=True, **vars(llm_config)) | |
| #tokenizer = AutoTokenizer.from_pretrained("NousResearch/Nous-Capybara-7B-V1.9") | |
| #generator = pipeline(task="text-generation", model=model, tokenizer=tokenizer) | |
| # Text generation with Llama 2 | |
| #mistral_capybara = TextGeneration(generator, prompt=capybara_prompt) | |
| #mistral_hermes = TextGeneration(generator, prompt=open_hermes_prompt) | |
| return representation_model | |