Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| from bertopic.representation import LlamaCPP | |
| from pydantic import BaseModel | |
| from huggingface_hub import hf_hub_download | |
| from gradio import Warning | |
| from bertopic.representation import KeyBERTInspired, MaximalMarginalRelevance, BaseRepresentation | |
| from funcs.embeddings import torch_device | |
| from funcs.prompts import phi3_prompt, phi3_start | |
| from funcs.helper_functions import get_or_create_env_var | |
| chosen_prompt = phi3_prompt #open_hermes_prompt # stablelm_prompt | |
| chosen_start_tag = phi3_start #open_hermes_start # stablelm_start | |
| random_seed = 42 | |
| RUNNING_ON_AWS = get_or_create_env_var('RUNNING_ON_AWS', '0') | |
| print(f'The value of RUNNING_ON_AWS is {RUNNING_ON_AWS}') | |
| USE_GPU = get_or_create_env_var('USE_GPU', '0') | |
| print(f'The value of USE_GPU is {USE_GPU}') | |
| # from torch import cuda, backends, version, get_num_threads | |
| # print("Is CUDA enabled? ", cuda.is_available()) | |
| # print("Is a CUDA device available on this computer?", backends.cudnn.enabled) | |
| # if cuda.is_available(): | |
| # torch_device = "gpu" | |
| # print("Cuda version installed is: ", version.cuda) | |
| # high_quality_mode = "Yes" | |
| # os.system("nvidia-smi") | |
| # else: | |
| # torch_device = "cpu" | |
| # high_quality_mode = "No" | |
| if USE_GPU == "1": | |
| print("Using GPU for representation functions") | |
| torch_device = "gpu" | |
| print("Cuda version installed is: ", version.cuda) | |
| high_quality_mode = "Yes" | |
| os.system("nvidia-smi") | |
| else: | |
| print("Using CPU for representation functions") | |
| torch_device = "cpu" | |
| high_quality_mode = "No" | |
| # Currently set n_gpu_layers to 0 even with cuda due to persistent bugs in implementation with cuda | |
| print("torch device for representation functions:", torch_device) | |
| if torch_device == "gpu": | |
| low_resource_mode = "No" | |
| n_gpu_layers = -1 # i.e. all | |
| else: # torch_device = "cpu" | |
| low_resource_mode = "Yes" | |
| n_gpu_layers = 0 | |
| #print("Running on device:", torch_device) | |
| from torch import get_num_threads | |
| n_threads = get_num_threads() | |
| print("CPU n_threads:", n_threads) | |
| # Default Model parameters | |
| temperature: float = 0.1 | |
| top_k: int = 3 | |
| top_p: float = 1 | |
| repeat_penalty: float = 1.1 | |
| last_n_tokens_size: int = 128 | |
| max_tokens: int = 500 | |
| seed: int = random_seed | |
| reset: bool = True | |
| stream: bool = False | |
| n_threads: int = n_threads | |
| n_batch:int = 512 | |
| n_ctx:int = 8192 #4096. # Set to 8192 just to avoid any exceeded context window issues | |
| sample:bool = True | |
| trust_remote_code:bool =True | |
| class LLamacppInitConfigGpu(BaseModel): | |
| last_n_tokens_size: int | |
| seed: int | |
| n_threads: int | |
| n_batch: int | |
| n_ctx: int | |
| n_gpu_layers: int | |
| temperature: float | |
| top_k: int | |
| top_p: float | |
| repeat_penalty: float | |
| max_tokens: int | |
| reset: bool | |
| stream: bool | |
| stop: str | |
| trust_remote_code:bool | |
| def update_gpu(self, new_value: int): | |
| self.n_gpu_layers = new_value | |
| llm_config = LLamacppInitConfigGpu(last_n_tokens_size=last_n_tokens_size, | |
| seed=seed, | |
| n_threads=n_threads, | |
| n_batch=n_batch, | |
| n_ctx=n_ctx, | |
| n_gpu_layers=n_gpu_layers, | |
| temperature=temperature, | |
| top_k=top_k, | |
| top_p=top_p, | |
| repeat_penalty=repeat_penalty, | |
| max_tokens=max_tokens, | |
| reset=reset, | |
| stream=stream, | |
| stop=chosen_start_tag, | |
| trust_remote_code=trust_remote_code) | |
| ## Create representation model parameters ## | |
| keybert = KeyBERTInspired(random_state=random_seed) | |
| mmr = MaximalMarginalRelevance(diversity=0.5) | |
| base_rep = BaseRepresentation() | |
| # Find model file | |
| def find_model_file(hf_model_name: str, hf_model_file: str, search_folder: str, sub_folder: str) -> str: | |
| """ | |
| Finds the specified model file within the given search folder and subfolder. | |
| Args: | |
| hf_model_name (str): The name of the Hugging Face model. | |
| hf_model_file (str): The specific file name of the model to find. | |
| search_folder (str): The base folder to start the search. | |
| sub_folder (str): The subfolder within the search folder to look into. | |
| Returns: | |
| str: The path to the found model file, or None if the file is not found. | |
| """ | |
| hf_loc = search_folder #os.environ["HF_HOME"] | |
| hf_sub_loc = search_folder + sub_folder #os.environ["HF_HOME"] | |
| if sub_folder == "/hub/": | |
| hf_model_name_path = hf_sub_loc + 'models--' + hf_model_name.replace("/","--") | |
| else: | |
| hf_model_name_path = hf_sub_loc | |
| def find_file(root_folder, file_name): | |
| for root, dirs, files in os.walk(root_folder): | |
| if file_name in files: | |
| return os.path.join(root, file_name) | |
| return None | |
| # Example usage | |
| folder_path = hf_model_name_path # Replace with your folder path | |
| file_to_find = hf_model_file # Replace with the file name you're looking for | |
| print("Searching for model file", hf_model_file, "in:", hf_model_name_path) | |
| found_file = find_file(folder_path, file_to_find) # os.environ["HF_HOME"] | |
| return found_file | |
| def create_representation_model(representation_type: str, llm_config: dict, hf_model_name: str, hf_model_file: str, chosen_start_tag: str, low_resource_mode: bool) -> dict: | |
| """ | |
| Creates a representation model based on the specified type and configuration. | |
| Args: | |
| representation_type (str): The type of representation model to create (e.g., "LLM", "KeyBERT"). | |
| llm_config (dict): Configuration settings for the LLM model. | |
| hf_model_name (str): The name of the Hugging Face model. | |
| hf_model_file (str): The specific file name of the model to find. | |
| chosen_start_tag (str): The start tag to use for the model. | |
| low_resource_mode (bool): Whether to enable low resource mode. | |
| Returns: | |
| dict: A dictionary containing the created representation model. | |
| """ | |
| if representation_type == "LLM": | |
| print("RUNNING_ON_AWS:", RUNNING_ON_AWS) | |
| if RUNNING_ON_AWS=="1": | |
| error_message = "LLM representation not available on AWS due to model size restrictions. Returning base representation" | |
| Warning(error_message, duration=5) | |
| print(error_message) | |
| representation_model = {"LLM":base_rep} | |
| return representation_model | |
| # Else import Llama | |
| else: | |
| from llama_cpp import Llama | |
| print("Generating LLM representation") | |
| # Use llama.cpp to load in model | |
| # Check for HF_HOME environment variable and supply a default value if it's not found (typical location for huggingface models) | |
| base_folder = "model" #"~/.cache/huggingface/hub" | |
| hf_home_value = os.getenv("HF_HOME", base_folder) | |
| # Expand the user symbol '~' to the full home directory path | |
| if "~" in base_folder: | |
| hf_home_value = os.path.expanduser(hf_home_value) | |
| # Check if the directory exists, create it if it doesn't | |
| if not os.path.exists(hf_home_value): | |
| os.makedirs(hf_home_value) | |
| print("Searching base folder for model:", hf_home_value) | |
| found_file = find_model_file(hf_model_name, hf_model_file, hf_home_value, "/rep/") | |
| if found_file: | |
| print(f"Model file found in model folder: {found_file}") | |
| else: | |
| found_file = find_model_file(hf_model_name, hf_model_file, hf_home_value, "/hub/") | |
| if not found_file: | |
| error = "File not found in HF hub directory or in local model file." | |
| print(error, " Downloading model from hub") | |
| found_file = hf_hub_download(repo_id=hf_model_name, filename=hf_model_file)#, local_dir=hf_home_value) # cache_dir | |
| print("Downloaded model from Huggingface Hub to: ", found_file) | |
| print("Loading representation model with", llm_config.n_gpu_layers, "layers allocated to GPU.") | |
| #llm_config.n_gpu_layers | |
| llm = Llama(model_path=found_file, stop=chosen_start_tag, n_gpu_layers=llm_config.n_gpu_layers, n_ctx=llm_config.n_ctx,seed=seed) #**llm_config.model_dump())# rope_freq_scale=0.5, | |
| #print(llm.n_gpu_layers) | |
| #print("Chosen prompt:", chosen_prompt) | |
| llm_model = LlamaCPP(llm, prompt=chosen_prompt)#, **gen_config.model_dump()) | |
| # All representation models | |
| representation_model = { | |
| "LLM": llm_model | |
| } | |
| elif representation_type == "KeyBERT": | |
| print("Generating KeyBERT representation") | |
| #representation_model = {"mmr": mmr} | |
| representation_model = {"KeyBERT": keybert} | |
| elif representation_type == "MMR": | |
| print("Generating MMR representation") | |
| representation_model = {"MMR": mmr} | |
| else: | |
| print("Generating default representation type") | |
| representation_model = {"Default":base_rep} | |
| return representation_model | |