Spaces:
Running
on
Zero
Running
on
Zero
Changed Phi model to smaller StableLM 2 1.6. Fixed a None type detection error.
Browse files- app.py +24 -16
- funcs/bertopic_hierarchical_documents.py +336 -0
- funcs/bertopic_hierarchical_documents_to_df.py +250 -0
- funcs/representation_model.py +3 -3
app.py
CHANGED
|
@@ -87,8 +87,8 @@ embeddings_name = "BAAI/bge-small-en-v1.5" #"jinaai/jina-embeddings-v2-base-en"
|
|
| 87 |
#revision_choice = "69d43700292701b06c24f43b96560566a4e5ad1f"
|
| 88 |
|
| 89 |
# Model used for representing topics
|
| 90 |
-
hf_model_name = 'TheBloke/phi-2-orange-GGUF' #'NousResearch/Nous-Capybara-7B-V1.9-GGUF' # 'second-state/stablelm-2-zephyr-1.6b-GGUF'
|
| 91 |
-
hf_model_file = 'phi-2-orange.Q5_K_M.gguf' #'Capybara-7B-V1.9-Q5_K_M.gguf' # 'stablelm-2-zephyr-1_6b-Q5_K_M.gguf'
|
| 92 |
|
| 93 |
def save_topic_outputs(topic_model, data_file_name_no_ext, output_list, docs, save_topic_model, progress=gr.Progress()):
|
| 94 |
topic_dets = topic_model.get_topic_info()
|
|
@@ -227,7 +227,15 @@ def extract_topics(data, in_files, min_docs_slider, in_colnames, max_topics_slid
|
|
| 227 |
nr_topics = max_topics_slider,
|
| 228 |
verbose = True)
|
| 229 |
|
| 230 |
-
topics_text, probs = topic_model.fit_transform(docs, embeddings_out)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 231 |
|
| 232 |
|
| 233 |
# Do this if you have pre-defined topics
|
|
@@ -254,13 +262,13 @@ def extract_topics(data, in_files, min_docs_slider, in_colnames, max_topics_slid
|
|
| 254 |
|
| 255 |
# print(topics_text)
|
| 256 |
|
| 257 |
-
|
| 258 |
-
|
| 259 |
|
| 260 |
-
|
| 261 |
|
| 262 |
-
|
| 263 |
-
|
| 264 |
|
| 265 |
# Outputs
|
| 266 |
output_list, output_text = save_topic_outputs(topic_model, data_file_name_no_ext, output_list, docs, save_topic_model)
|
|
@@ -319,8 +327,8 @@ def reduce_outliers(topic_model, docs, embeddings_out, data_file_name_no_ext, lo
|
|
| 319 |
topic_dets = topic_model.get_topic_info()
|
| 320 |
|
| 321 |
# Replace original labels with LLM labels
|
| 322 |
-
if "
|
| 323 |
-
llm_labels = [label[0][0].split("\n")[0] for label in topic_model.get_topics(full=True)["
|
| 324 |
topic_model.set_topic_labels(llm_labels)
|
| 325 |
else:
|
| 326 |
topic_model.set_topic_labels(list(topic_dets["Name"]))
|
|
@@ -355,14 +363,14 @@ def represent_topics(topic_model, docs, embeddings_out, data_file_name_no_ext, l
|
|
| 355 |
topic_model.update_topics(docs, topics=topics_text, vectorizer_model=vectoriser_model, representation_model=representation_model)
|
| 356 |
|
| 357 |
# Replace original labels with LLM labels
|
| 358 |
-
if "
|
| 359 |
-
llm_labels = [label[0][0].split("\n")[0] for label in topic_model.get_topics(full=True)["
|
| 360 |
topic_model.set_topic_labels(llm_labels)
|
| 361 |
|
| 362 |
-
with open('llm_topic_list.
|
| 363 |
for item in llm_labels:
|
| 364 |
file.write(f"{item}\n")
|
| 365 |
-
output_list.append('llm_topic_list.
|
| 366 |
else:
|
| 367 |
topic_model.set_topic_labels(list(topic_dets["Name"]))
|
| 368 |
|
|
@@ -386,8 +394,8 @@ def visualise_topics(topic_model, docs, data_file_name_no_ext, low_resource_mode
|
|
| 386 |
topic_dets = topic_model.get_topic_info()
|
| 387 |
|
| 388 |
# Replace original labels with LLM labels
|
| 389 |
-
if "
|
| 390 |
-
llm_labels = [label[0][0].split("\n")[0] for label in topic_model.get_topics(full=True)["
|
| 391 |
topic_model.set_topic_labels(llm_labels)
|
| 392 |
else:
|
| 393 |
topic_model.set_topic_labels(list(topic_dets["Name"]))
|
|
|
|
| 87 |
#revision_choice = "69d43700292701b06c24f43b96560566a4e5ad1f"
|
| 88 |
|
| 89 |
# Model used for representing topics
|
| 90 |
+
hf_model_name = 'second-state/stablelm-2-zephyr-1.6b-GGUF' #'TheBloke/phi-2-orange-GGUF' #'NousResearch/Nous-Capybara-7B-V1.9-GGUF' # 'second-state/stablelm-2-zephyr-1.6b-GGUF'
|
| 91 |
+
hf_model_file = 'stablelm-2-zephyr-1_6b-Q5_K_M.gguf' # 'phi-2-orange.Q5_K_M.gguf' #'Capybara-7B-V1.9-Q5_K_M.gguf' # 'stablelm-2-zephyr-1_6b-Q5_K_M.gguf'
|
| 92 |
|
| 93 |
def save_topic_outputs(topic_model, data_file_name_no_ext, output_list, docs, save_topic_model, progress=gr.Progress()):
|
| 94 |
topic_dets = topic_model.get_topic_info()
|
|
|
|
| 227 |
nr_topics = max_topics_slider,
|
| 228 |
verbose = True)
|
| 229 |
|
| 230 |
+
topics_text, probs = topic_model.fit_transform(docs, embeddings_out)
|
| 231 |
+
|
| 232 |
+
if not topics_text:
|
| 233 |
+
# Handle the empty array case
|
| 234 |
+
|
| 235 |
+
return "No topics found.", data_file_name, None, embeddings_out, data_file_name_no_ext, topic_model, docs, label_list
|
| 236 |
+
|
| 237 |
+
else:
|
| 238 |
+
print("Topic model created.")
|
| 239 |
|
| 240 |
|
| 241 |
# Do this if you have pre-defined topics
|
|
|
|
| 262 |
|
| 263 |
# print(topics_text)
|
| 264 |
|
| 265 |
+
if topics_text.size == 0:
|
| 266 |
+
# Handle the empty array case
|
| 267 |
|
| 268 |
+
return "No topics found.", data_file_name, None, embeddings_out, data_file_name_no_ext, topic_model, docs, label_list
|
| 269 |
|
| 270 |
+
else:
|
| 271 |
+
print("Topic model created.")
|
| 272 |
|
| 273 |
# Outputs
|
| 274 |
output_list, output_text = save_topic_outputs(topic_model, data_file_name_no_ext, output_list, docs, save_topic_model)
|
|
|
|
| 327 |
topic_dets = topic_model.get_topic_info()
|
| 328 |
|
| 329 |
# Replace original labels with LLM labels
|
| 330 |
+
if "LLM" in topic_model.get_topic_info().columns:
|
| 331 |
+
llm_labels = [label[0][0].split("\n")[0] for label in topic_model.get_topics(full=True)["LLM"].values()]
|
| 332 |
topic_model.set_topic_labels(llm_labels)
|
| 333 |
else:
|
| 334 |
topic_model.set_topic_labels(list(topic_dets["Name"]))
|
|
|
|
| 363 |
topic_model.update_topics(docs, topics=topics_text, vectorizer_model=vectoriser_model, representation_model=representation_model)
|
| 364 |
|
| 365 |
# Replace original labels with LLM labels
|
| 366 |
+
if "LLM" in topic_model.get_topic_info().columns:
|
| 367 |
+
llm_labels = [label[0][0].split("\n")[0] for label in topic_model.get_topics(full=True)["LLM"].values()]
|
| 368 |
topic_model.set_topic_labels(llm_labels)
|
| 369 |
|
| 370 |
+
with open('llm_topic_list.csv', 'w') as file:
|
| 371 |
for item in llm_labels:
|
| 372 |
file.write(f"{item}\n")
|
| 373 |
+
output_list.append('llm_topic_list.csv')
|
| 374 |
else:
|
| 375 |
topic_model.set_topic_labels(list(topic_dets["Name"]))
|
| 376 |
|
|
|
|
| 394 |
topic_dets = topic_model.get_topic_info()
|
| 395 |
|
| 396 |
# Replace original labels with LLM labels
|
| 397 |
+
if "LLM" in topic_model.get_topic_info().columns:
|
| 398 |
+
llm_labels = [label[0][0].split("\n")[0] for label in topic_model.get_topics(full=True)["LLM"].values()]
|
| 399 |
topic_model.set_topic_labels(llm_labels)
|
| 400 |
else:
|
| 401 |
topic_model.set_topic_labels(list(topic_dets["Name"]))
|
funcs/bertopic_hierarchical_documents.py
ADDED
|
@@ -0,0 +1,336 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import plotly.graph_objects as go
|
| 4 |
+
import math
|
| 5 |
+
|
| 6 |
+
from umap import UMAP
|
| 7 |
+
from typing import List, Union
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def visualize_hierarchical_documents(topic_model,
|
| 11 |
+
docs: List[str],
|
| 12 |
+
hierarchical_topics: pd.DataFrame,
|
| 13 |
+
topics: List[int] = None,
|
| 14 |
+
embeddings: np.ndarray = None,
|
| 15 |
+
reduced_embeddings: np.ndarray = None,
|
| 16 |
+
sample: Union[float, int] = None,
|
| 17 |
+
hide_annotations: bool = False,
|
| 18 |
+
hide_document_hover: bool = True,
|
| 19 |
+
nr_levels: int = 10,
|
| 20 |
+
level_scale: str = 'linear',
|
| 21 |
+
custom_labels: Union[bool, str] = False,
|
| 22 |
+
title: str = "<b>Hierarchical Documents and Topics</b>",
|
| 23 |
+
width: int = 1200,
|
| 24 |
+
height: int = 750) -> go.Figure:
|
| 25 |
+
""" Visualize documents and their topics in 2D at different levels of hierarchy
|
| 26 |
+
|
| 27 |
+
Arguments:
|
| 28 |
+
docs: The documents you used when calling either `fit` or `fit_transform`
|
| 29 |
+
hierarchical_topics: A dataframe that contains a hierarchy of topics
|
| 30 |
+
represented by their parents and their children
|
| 31 |
+
topics: A selection of topics to visualize.
|
| 32 |
+
Not to be confused with the topics that you get from `.fit_transform`.
|
| 33 |
+
For example, if you want to visualize only topics 1 through 5:
|
| 34 |
+
`topics = [1, 2, 3, 4, 5]`.
|
| 35 |
+
embeddings: The embeddings of all documents in `docs`.
|
| 36 |
+
reduced_embeddings: The 2D reduced embeddings of all documents in `docs`.
|
| 37 |
+
sample: The percentage of documents in each topic that you would like to keep.
|
| 38 |
+
Value can be between 0 and 1. Setting this value to, for example,
|
| 39 |
+
0.1 (10% of documents in each topic) makes it easier to visualize
|
| 40 |
+
millions of documents as a subset is chosen.
|
| 41 |
+
hide_annotations: Hide the names of the traces on top of each cluster.
|
| 42 |
+
hide_document_hover: Hide the content of the documents when hovering over
|
| 43 |
+
specific points. Helps to speed up generation of visualizations.
|
| 44 |
+
nr_levels: The number of levels to be visualized in the hierarchy. First, the distances
|
| 45 |
+
in `hierarchical_topics.Distance` are split in `nr_levels` lists of distances.
|
| 46 |
+
Then, for each list of distances, the merged topics are selected that have a
|
| 47 |
+
distance less or equal to the maximum distance of the selected list of distances.
|
| 48 |
+
NOTE: To get all possible merged steps, make sure that `nr_levels` is equal to
|
| 49 |
+
the length of `hierarchical_topics`.
|
| 50 |
+
level_scale: Whether to apply a linear or logarithmic (log) scale levels of the distance
|
| 51 |
+
vector. Linear scaling will perform an equal number of merges at each level
|
| 52 |
+
while logarithmic scaling will perform more mergers in earlier levels to
|
| 53 |
+
provide more resolution at higher levels (this can be used for when the number
|
| 54 |
+
of topics is large).
|
| 55 |
+
custom_labels: If bool, whether to use custom topic labels that were defined using
|
| 56 |
+
`topic_model.set_topic_labels`.
|
| 57 |
+
If `str`, it uses labels from other aspects, e.g., "Aspect1".
|
| 58 |
+
NOTE: Custom labels are only generated for the original
|
| 59 |
+
un-merged topics.
|
| 60 |
+
title: Title of the plot.
|
| 61 |
+
width: The width of the figure.
|
| 62 |
+
height: The height of the figure.
|
| 63 |
+
|
| 64 |
+
Examples:
|
| 65 |
+
|
| 66 |
+
To visualize the topics simply run:
|
| 67 |
+
|
| 68 |
+
```python
|
| 69 |
+
topic_model.visualize_hierarchical_documents(docs, hierarchical_topics)
|
| 70 |
+
```
|
| 71 |
+
|
| 72 |
+
Do note that this re-calculates the embeddings and reduces them to 2D.
|
| 73 |
+
The advised and prefered pipeline for using this function is as follows:
|
| 74 |
+
|
| 75 |
+
```python
|
| 76 |
+
from sklearn.datasets import fetch_20newsgroups
|
| 77 |
+
from sentence_transformers import SentenceTransformer
|
| 78 |
+
from bertopic import BERTopic
|
| 79 |
+
from umap import UMAP
|
| 80 |
+
|
| 81 |
+
# Prepare embeddings
|
| 82 |
+
docs = fetch_20newsgroups(subset='all', remove=('headers', 'footers', 'quotes'))['data']
|
| 83 |
+
sentence_model = SentenceTransformer("all-MiniLM-L6-v2")
|
| 84 |
+
embeddings = sentence_model.encode(docs, show_progress_bar=False)
|
| 85 |
+
|
| 86 |
+
# Train BERTopic and extract hierarchical topics
|
| 87 |
+
topic_model = BERTopic().fit(docs, embeddings)
|
| 88 |
+
hierarchical_topics = topic_model.hierarchical_topics(docs)
|
| 89 |
+
|
| 90 |
+
# Reduce dimensionality of embeddings, this step is optional
|
| 91 |
+
# reduced_embeddings = UMAP(n_neighbors=10, n_components=2, min_dist=0.0, metric='cosine').fit_transform(embeddings)
|
| 92 |
+
|
| 93 |
+
# Run the visualization with the original embeddings
|
| 94 |
+
topic_model.visualize_hierarchical_documents(docs, hierarchical_topics, embeddings=embeddings)
|
| 95 |
+
|
| 96 |
+
# Or, if you have reduced the original embeddings already:
|
| 97 |
+
topic_model.visualize_hierarchical_documents(docs, hierarchical_topics, reduced_embeddings=reduced_embeddings)
|
| 98 |
+
```
|
| 99 |
+
|
| 100 |
+
Or if you want to save the resulting figure:
|
| 101 |
+
|
| 102 |
+
```python
|
| 103 |
+
fig = topic_model.visualize_hierarchical_documents(docs, hierarchical_topics, reduced_embeddings=reduced_embeddings)
|
| 104 |
+
fig.write_html("path/to/file.html")
|
| 105 |
+
```
|
| 106 |
+
|
| 107 |
+
NOTE:
|
| 108 |
+
This visualization was inspired by the scatter plot representation of Doc2Map:
|
| 109 |
+
https://github.com/louisgeisler/Doc2Map
|
| 110 |
+
|
| 111 |
+
<iframe src="../../getting_started/visualization/hierarchical_documents.html"
|
| 112 |
+
style="width:1000px; height: 770px; border: 0px;""></iframe>
|
| 113 |
+
"""
|
| 114 |
+
topic_per_doc = topic_model.topics_
|
| 115 |
+
|
| 116 |
+
# Sample the data to optimize for visualization and dimensionality reduction
|
| 117 |
+
if sample is None or sample > 1:
|
| 118 |
+
sample = 1
|
| 119 |
+
|
| 120 |
+
indices = []
|
| 121 |
+
for topic in set(topic_per_doc):
|
| 122 |
+
s = np.where(np.array(topic_per_doc) == topic)[0]
|
| 123 |
+
size = len(s) if len(s) < 100 else int(len(s)*sample)
|
| 124 |
+
indices.extend(np.random.choice(s, size=size, replace=False))
|
| 125 |
+
indices = np.array(indices)
|
| 126 |
+
|
| 127 |
+
df = pd.DataFrame({"topic": np.array(topic_per_doc)[indices]})
|
| 128 |
+
df["doc"] = [docs[index] for index in indices]
|
| 129 |
+
df["topic"] = [topic_per_doc[index] for index in indices]
|
| 130 |
+
|
| 131 |
+
# Extract embeddings if not already done
|
| 132 |
+
if sample is None:
|
| 133 |
+
if embeddings is None and reduced_embeddings is None:
|
| 134 |
+
embeddings_to_reduce = topic_model._extract_embeddings(df.doc.to_list(), method="document")
|
| 135 |
+
else:
|
| 136 |
+
embeddings_to_reduce = embeddings
|
| 137 |
+
else:
|
| 138 |
+
if embeddings is not None:
|
| 139 |
+
embeddings_to_reduce = embeddings[indices]
|
| 140 |
+
elif embeddings is None and reduced_embeddings is None:
|
| 141 |
+
embeddings_to_reduce = topic_model._extract_embeddings(df.doc.to_list(), method="document")
|
| 142 |
+
|
| 143 |
+
# Reduce input embeddings
|
| 144 |
+
if reduced_embeddings is None:
|
| 145 |
+
umap_model = UMAP(n_neighbors=10, n_components=2, min_dist=0.0, metric='cosine').fit(embeddings_to_reduce)
|
| 146 |
+
embeddings_2d = umap_model.embedding_
|
| 147 |
+
elif sample is not None and reduced_embeddings is not None:
|
| 148 |
+
embeddings_2d = reduced_embeddings[indices]
|
| 149 |
+
elif sample is None and reduced_embeddings is not None:
|
| 150 |
+
embeddings_2d = reduced_embeddings
|
| 151 |
+
|
| 152 |
+
# Combine data
|
| 153 |
+
df["x"] = embeddings_2d[:, 0]
|
| 154 |
+
df["y"] = embeddings_2d[:, 1]
|
| 155 |
+
|
| 156 |
+
# Create topic list for each level, levels are created by calculating the distance
|
| 157 |
+
distances = hierarchical_topics.Distance.to_list()
|
| 158 |
+
if level_scale == 'log' or level_scale == 'logarithmic':
|
| 159 |
+
log_indices = np.round(np.logspace(start=math.log(1,10), stop=math.log(len(distances)-1,10), num=nr_levels)).astype(int).tolist()
|
| 160 |
+
log_indices.reverse()
|
| 161 |
+
max_distances = [distances[i] for i in log_indices]
|
| 162 |
+
elif level_scale == 'lin' or level_scale == 'linear':
|
| 163 |
+
max_distances = [distances[indices[-1]] for indices in np.array_split(range(len(hierarchical_topics)), nr_levels)][::-1]
|
| 164 |
+
else:
|
| 165 |
+
raise ValueError("level_scale needs to be one of 'log' or 'linear'")
|
| 166 |
+
|
| 167 |
+
for index, max_distance in enumerate(max_distances):
|
| 168 |
+
|
| 169 |
+
# Get topics below `max_distance`
|
| 170 |
+
mapping = {topic: topic for topic in df.topic.unique()}
|
| 171 |
+
selection = hierarchical_topics.loc[hierarchical_topics.Distance <= max_distance, :]
|
| 172 |
+
selection.Parent_ID = selection.Parent_ID.astype(int)
|
| 173 |
+
selection = selection.sort_values("Parent_ID")
|
| 174 |
+
|
| 175 |
+
for row in selection.iterrows():
|
| 176 |
+
for topic in row[1].Topics:
|
| 177 |
+
mapping[topic] = row[1].Parent_ID
|
| 178 |
+
|
| 179 |
+
# Make sure the mappings are mapped 1:1
|
| 180 |
+
mappings = [True for _ in mapping]
|
| 181 |
+
while any(mappings):
|
| 182 |
+
for i, (key, value) in enumerate(mapping.items()):
|
| 183 |
+
if value in mapping.keys() and key != value:
|
| 184 |
+
mapping[key] = mapping[value]
|
| 185 |
+
else:
|
| 186 |
+
mappings[i] = False
|
| 187 |
+
|
| 188 |
+
# Create new column
|
| 189 |
+
df[f"level_{index+1}"] = df.topic.map(mapping)
|
| 190 |
+
df[f"level_{index+1}"] = df[f"level_{index+1}"].astype(int)
|
| 191 |
+
|
| 192 |
+
# Prepare topic names of original and merged topics
|
| 193 |
+
trace_names = []
|
| 194 |
+
topic_names = {}
|
| 195 |
+
for topic in range(hierarchical_topics.Parent_ID.astype(int).max()):
|
| 196 |
+
if topic < hierarchical_topics.Parent_ID.astype(int).min():
|
| 197 |
+
if topic_model.get_topic(topic):
|
| 198 |
+
if isinstance(custom_labels, str):
|
| 199 |
+
trace_name = f"{topic}_" + "_".join(list(zip(*topic_model.topic_aspects_[custom_labels][topic]))[0][:3])
|
| 200 |
+
elif topic_model.custom_labels_ is not None and custom_labels:
|
| 201 |
+
trace_name = topic_model.custom_labels_[topic + topic_model._outliers]
|
| 202 |
+
else:
|
| 203 |
+
trace_name = f"{topic}_" + "_".join([word[:20] for word, _ in topic_model.get_topic(topic)][:3])
|
| 204 |
+
topic_names[topic] = {"trace_name": trace_name[:40], "plot_text": trace_name[:40]}
|
| 205 |
+
trace_names.append(trace_name)
|
| 206 |
+
else:
|
| 207 |
+
trace_name = f"{topic}_" + hierarchical_topics.loc[hierarchical_topics.Parent_ID == str(topic), "Parent_Name"].values[0]
|
| 208 |
+
plot_text = "_".join([name[:20] for name in trace_name.split("_")[:3]])
|
| 209 |
+
topic_names[topic] = {"trace_name": trace_name[:40], "plot_text": plot_text[:40]}
|
| 210 |
+
trace_names.append(trace_name)
|
| 211 |
+
|
| 212 |
+
# Prepare traces
|
| 213 |
+
all_traces = []
|
| 214 |
+
for level in range(len(max_distances)):
|
| 215 |
+
traces = []
|
| 216 |
+
|
| 217 |
+
# Outliers
|
| 218 |
+
if topic_model._outliers:
|
| 219 |
+
traces.append(
|
| 220 |
+
go.Scattergl(
|
| 221 |
+
x=df.loc[(df[f"level_{level+1}"] == -1), "x"],
|
| 222 |
+
y=df.loc[df[f"level_{level+1}"] == -1, "y"],
|
| 223 |
+
mode='markers+text',
|
| 224 |
+
name="other",
|
| 225 |
+
hoverinfo="text",
|
| 226 |
+
hovertext=df.loc[(df[f"level_{level+1}"] == -1), "doc"] if not hide_document_hover else None,
|
| 227 |
+
showlegend=False,
|
| 228 |
+
marker=dict(color='#CFD8DC', size=5, opacity=0.5)
|
| 229 |
+
)
|
| 230 |
+
)
|
| 231 |
+
|
| 232 |
+
# Selected topics
|
| 233 |
+
if topics:
|
| 234 |
+
selection = df.loc[(df.topic.isin(topics)), :]
|
| 235 |
+
unique_topics = sorted([int(topic) for topic in selection[f"level_{level+1}"].unique()])
|
| 236 |
+
else:
|
| 237 |
+
unique_topics = sorted([int(topic) for topic in df[f"level_{level+1}"].unique()])
|
| 238 |
+
|
| 239 |
+
for topic in unique_topics:
|
| 240 |
+
if topic != -1:
|
| 241 |
+
if topics:
|
| 242 |
+
selection = df.loc[(df[f"level_{level+1}"] == topic) &
|
| 243 |
+
(df.topic.isin(topics)), :]
|
| 244 |
+
else:
|
| 245 |
+
selection = df.loc[df[f"level_{level+1}"] == topic, :]
|
| 246 |
+
|
| 247 |
+
if not hide_annotations:
|
| 248 |
+
selection.loc[len(selection), :] = None
|
| 249 |
+
selection["text"] = ""
|
| 250 |
+
selection.loc[len(selection) - 1, "x"] = selection.x.mean()
|
| 251 |
+
selection.loc[len(selection) - 1, "y"] = selection.y.mean()
|
| 252 |
+
selection.loc[len(selection) - 1, "text"] = topic_names[int(topic)]["plot_text"]
|
| 253 |
+
|
| 254 |
+
traces.append(
|
| 255 |
+
go.Scattergl(
|
| 256 |
+
x=selection.x,
|
| 257 |
+
y=selection.y,
|
| 258 |
+
text=selection.text if not hide_annotations else None,
|
| 259 |
+
hovertext=selection.doc if not hide_document_hover else None,
|
| 260 |
+
hoverinfo="text",
|
| 261 |
+
name=topic_names[int(topic)]["trace_name"],
|
| 262 |
+
mode='markers+text',
|
| 263 |
+
marker=dict(size=5, opacity=0.5)
|
| 264 |
+
)
|
| 265 |
+
)
|
| 266 |
+
|
| 267 |
+
all_traces.append(traces)
|
| 268 |
+
|
| 269 |
+
# Track and count traces
|
| 270 |
+
nr_traces_per_set = [len(traces) for traces in all_traces]
|
| 271 |
+
trace_indices = [(0, nr_traces_per_set[0])]
|
| 272 |
+
for index, nr_traces in enumerate(nr_traces_per_set[1:]):
|
| 273 |
+
start = trace_indices[index][1]
|
| 274 |
+
end = nr_traces + start
|
| 275 |
+
trace_indices.append((start, end))
|
| 276 |
+
|
| 277 |
+
# Visualization
|
| 278 |
+
fig = go.Figure()
|
| 279 |
+
for traces in all_traces:
|
| 280 |
+
for trace in traces:
|
| 281 |
+
fig.add_trace(trace)
|
| 282 |
+
|
| 283 |
+
for index in range(len(fig.data)):
|
| 284 |
+
if index >= nr_traces_per_set[0]:
|
| 285 |
+
fig.data[index].visible = False
|
| 286 |
+
|
| 287 |
+
# Create and add slider
|
| 288 |
+
steps = []
|
| 289 |
+
for index, indices in enumerate(trace_indices):
|
| 290 |
+
step = dict(
|
| 291 |
+
method="update",
|
| 292 |
+
label=str(index),
|
| 293 |
+
args=[{"visible": [False] * len(fig.data)}]
|
| 294 |
+
)
|
| 295 |
+
for index in range(indices[1]-indices[0]):
|
| 296 |
+
step["args"][0]["visible"][index+indices[0]] = True
|
| 297 |
+
steps.append(step)
|
| 298 |
+
|
| 299 |
+
sliders = [dict(
|
| 300 |
+
currentvalue={"prefix": "Level: "},
|
| 301 |
+
pad={"t": 20},
|
| 302 |
+
steps=steps
|
| 303 |
+
)]
|
| 304 |
+
|
| 305 |
+
# Add grid in a 'plus' shape
|
| 306 |
+
x_range = (df.x.min() - abs((df.x.min()) * .15), df.x.max() + abs((df.x.max()) * .15))
|
| 307 |
+
y_range = (df.y.min() - abs((df.y.min()) * .15), df.y.max() + abs((df.y.max()) * .15))
|
| 308 |
+
fig.add_shape(type="line",
|
| 309 |
+
x0=sum(x_range) / 2, y0=y_range[0], x1=sum(x_range) / 2, y1=y_range[1],
|
| 310 |
+
line=dict(color="#CFD8DC", width=2))
|
| 311 |
+
fig.add_shape(type="line",
|
| 312 |
+
x0=x_range[0], y0=sum(y_range) / 2, x1=x_range[1], y1=sum(y_range) / 2,
|
| 313 |
+
line=dict(color="#9E9E9E", width=2))
|
| 314 |
+
fig.add_annotation(x=x_range[0], y=sum(y_range) / 2, text="D1", showarrow=False, yshift=10)
|
| 315 |
+
fig.add_annotation(y=y_range[1], x=sum(x_range) / 2, text="D2", showarrow=False, xshift=10)
|
| 316 |
+
|
| 317 |
+
# Stylize layout
|
| 318 |
+
fig.update_layout(
|
| 319 |
+
sliders=sliders,
|
| 320 |
+
template="simple_white",
|
| 321 |
+
title={
|
| 322 |
+
'text': f"{title}",
|
| 323 |
+
'x': 0.5,
|
| 324 |
+
'xanchor': 'center',
|
| 325 |
+
'yanchor': 'top',
|
| 326 |
+
'font': dict(
|
| 327 |
+
size=22,
|
| 328 |
+
color="Black")
|
| 329 |
+
},
|
| 330 |
+
width=width,
|
| 331 |
+
height=height,
|
| 332 |
+
)
|
| 333 |
+
|
| 334 |
+
fig.update_xaxes(visible=False)
|
| 335 |
+
fig.update_yaxes(visible=False)
|
| 336 |
+
return fig
|
funcs/bertopic_hierarchical_documents_to_df.py
ADDED
|
@@ -0,0 +1,250 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import plotly.graph_objects as go
|
| 4 |
+
import math
|
| 5 |
+
|
| 6 |
+
from umap import UMAP
|
| 7 |
+
from typing import List, Union
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def visualize_hierarchical_documents_to_df(topic_model,
|
| 11 |
+
docs: List[str],
|
| 12 |
+
hierarchical_topics: pd.DataFrame,
|
| 13 |
+
topics: List[int] = None,
|
| 14 |
+
embeddings: np.ndarray = None,
|
| 15 |
+
reduced_embeddings: np.ndarray = None,
|
| 16 |
+
sample: Union[float, int] = None,
|
| 17 |
+
hide_annotations: bool = False,
|
| 18 |
+
hide_document_hover: bool = True,
|
| 19 |
+
nr_levels: int = 10,
|
| 20 |
+
level_scale: str = 'linear',
|
| 21 |
+
custom_labels: Union[bool, str] = False,
|
| 22 |
+
title: str = "<b>Hierarchical Documents and Topics</b>",
|
| 23 |
+
width: int = 1200,
|
| 24 |
+
height: int = 750) -> go.Figure:
|
| 25 |
+
""" Visualize documents and their topics in 2D at different levels of hierarchy
|
| 26 |
+
|
| 27 |
+
Arguments:
|
| 28 |
+
docs: The documents you used when calling either `fit` or `fit_transform`
|
| 29 |
+
hierarchical_topics: A dataframe that contains a hierarchy of topics
|
| 30 |
+
represented by their parents and their children
|
| 31 |
+
topics: A selection of topics to visualize.
|
| 32 |
+
Not to be confused with the topics that you get from `.fit_transform`.
|
| 33 |
+
For example, if you want to visualize only topics 1 through 5:
|
| 34 |
+
`topics = [1, 2, 3, 4, 5]`.
|
| 35 |
+
embeddings: The embeddings of all documents in `docs`.
|
| 36 |
+
reduced_embeddings: The 2D reduced embeddings of all documents in `docs`.
|
| 37 |
+
sample: The percentage of documents in each topic that you would like to keep.
|
| 38 |
+
Value can be between 0 and 1. Setting this value to, for example,
|
| 39 |
+
0.1 (10% of documents in each topic) makes it easier to visualize
|
| 40 |
+
millions of documents as a subset is chosen.
|
| 41 |
+
hide_annotations: Hide the names of the traces on top of each cluster.
|
| 42 |
+
hide_document_hover: Hide the content of the documents when hovering over
|
| 43 |
+
specific points. Helps to speed up generation of visualizations.
|
| 44 |
+
nr_levels: The number of levels to be visualized in the hierarchy. First, the distances
|
| 45 |
+
in `hierarchical_topics.Distance` are split in `nr_levels` lists of distances.
|
| 46 |
+
Then, for each list of distances, the merged topics are selected that have a
|
| 47 |
+
distance less or equal to the maximum distance of the selected list of distances.
|
| 48 |
+
NOTE: To get all possible merged steps, make sure that `nr_levels` is equal to
|
| 49 |
+
the length of `hierarchical_topics`.
|
| 50 |
+
level_scale: Whether to apply a linear or logarithmic (log) scale levels of the distance
|
| 51 |
+
vector. Linear scaling will perform an equal number of merges at each level
|
| 52 |
+
while logarithmic scaling will perform more mergers in earlier levels to
|
| 53 |
+
provide more resolution at higher levels (this can be used for when the number
|
| 54 |
+
of topics is large).
|
| 55 |
+
custom_labels: If bool, whether to use custom topic labels that were defined using
|
| 56 |
+
`topic_model.set_topic_labels`.
|
| 57 |
+
If `str`, it uses labels from other aspects, e.g., "Aspect1".
|
| 58 |
+
NOTE: Custom labels are only generated for the original
|
| 59 |
+
un-merged topics.
|
| 60 |
+
title: Title of the plot.
|
| 61 |
+
width: The width of the figure.
|
| 62 |
+
height: The height of the figure.
|
| 63 |
+
|
| 64 |
+
Examples:
|
| 65 |
+
|
| 66 |
+
To visualize the topics simply run:
|
| 67 |
+
|
| 68 |
+
```python
|
| 69 |
+
topic_model.visualize_hierarchical_documents(docs, hierarchical_topics)
|
| 70 |
+
```
|
| 71 |
+
|
| 72 |
+
Do note that this re-calculates the embeddings and reduces them to 2D.
|
| 73 |
+
The advised and prefered pipeline for using this function is as follows:
|
| 74 |
+
|
| 75 |
+
```python
|
| 76 |
+
from sklearn.datasets import fetch_20newsgroups
|
| 77 |
+
from sentence_transformers import SentenceTransformer
|
| 78 |
+
from bertopic import BERTopic
|
| 79 |
+
from umap import UMAP
|
| 80 |
+
|
| 81 |
+
# Prepare embeddings
|
| 82 |
+
docs = fetch_20newsgroups(subset='all', remove=('headers', 'footers', 'quotes'))['data']
|
| 83 |
+
sentence_model = SentenceTransformer("all-MiniLM-L6-v2")
|
| 84 |
+
embeddings = sentence_model.encode(docs, show_progress_bar=False)
|
| 85 |
+
|
| 86 |
+
# Train BERTopic and extract hierarchical topics
|
| 87 |
+
topic_model = BERTopic().fit(docs, embeddings)
|
| 88 |
+
hierarchical_topics = topic_model.hierarchical_topics(docs)
|
| 89 |
+
|
| 90 |
+
# Reduce dimensionality of embeddings, this step is optional
|
| 91 |
+
# reduced_embeddings = UMAP(n_neighbors=10, n_components=2, min_dist=0.0, metric='cosine').fit_transform(embeddings)
|
| 92 |
+
|
| 93 |
+
# Run the visualization with the original embeddings
|
| 94 |
+
topic_model.visualize_hierarchical_documents(docs, hierarchical_topics, embeddings=embeddings)
|
| 95 |
+
|
| 96 |
+
# Or, if you have reduced the original embeddings already:
|
| 97 |
+
topic_model.visualize_hierarchical_documents(docs, hierarchical_topics, reduced_embeddings=reduced_embeddings)
|
| 98 |
+
```
|
| 99 |
+
|
| 100 |
+
Or if you want to save the resulting figure:
|
| 101 |
+
|
| 102 |
+
```python
|
| 103 |
+
fig = topic_model.visualize_hierarchical_documents(docs, hierarchical_topics, reduced_embeddings=reduced_embeddings)
|
| 104 |
+
fig.write_html("path/to/file.html")
|
| 105 |
+
```
|
| 106 |
+
|
| 107 |
+
NOTE:
|
| 108 |
+
This visualization was inspired by the scatter plot representation of Doc2Map:
|
| 109 |
+
https://github.com/louisgeisler/Doc2Map
|
| 110 |
+
|
| 111 |
+
<iframe src="../../getting_started/visualization/hierarchical_documents.html"
|
| 112 |
+
style="width:1000px; height: 770px; border: 0px;""></iframe>
|
| 113 |
+
"""
|
| 114 |
+
topic_per_doc = topic_model.topics_
|
| 115 |
+
|
| 116 |
+
# Sample the data to optimize for visualization and dimensionality reduction
|
| 117 |
+
if sample is None or sample > 1:
|
| 118 |
+
sample = 1
|
| 119 |
+
|
| 120 |
+
indices = []
|
| 121 |
+
for topic in set(topic_per_doc):
|
| 122 |
+
s = np.where(np.array(topic_per_doc) == topic)[0]
|
| 123 |
+
size = len(s) if len(s) < 100 else int(len(s)*sample)
|
| 124 |
+
indices.extend(np.random.choice(s, size=size, replace=False))
|
| 125 |
+
indices = np.array(indices)
|
| 126 |
+
|
| 127 |
+
df = pd.DataFrame({"topic": np.array(topic_per_doc)[indices]})
|
| 128 |
+
df["doc"] = [docs[index] for index in indices]
|
| 129 |
+
df["topic"] = [topic_per_doc[index] for index in indices]
|
| 130 |
+
|
| 131 |
+
# Extract embeddings if not already done
|
| 132 |
+
if sample is None:
|
| 133 |
+
if embeddings is None and reduced_embeddings is None:
|
| 134 |
+
embeddings_to_reduce = topic_model._extract_embeddings(df.doc.to_list(), method="document")
|
| 135 |
+
else:
|
| 136 |
+
embeddings_to_reduce = embeddings
|
| 137 |
+
else:
|
| 138 |
+
if embeddings is not None:
|
| 139 |
+
embeddings_to_reduce = embeddings[indices]
|
| 140 |
+
elif embeddings is None and reduced_embeddings is None:
|
| 141 |
+
embeddings_to_reduce = topic_model._extract_embeddings(df.doc.to_list(), method="document")
|
| 142 |
+
|
| 143 |
+
# Reduce input embeddings
|
| 144 |
+
if reduced_embeddings is None:
|
| 145 |
+
umap_model = UMAP(n_neighbors=10, n_components=2, min_dist=0.0, metric='cosine').fit(embeddings_to_reduce)
|
| 146 |
+
embeddings_2d = umap_model.embedding_
|
| 147 |
+
elif sample is not None and reduced_embeddings is not None:
|
| 148 |
+
embeddings_2d = reduced_embeddings[indices]
|
| 149 |
+
elif sample is None and reduced_embeddings is not None:
|
| 150 |
+
embeddings_2d = reduced_embeddings
|
| 151 |
+
|
| 152 |
+
# Combine data
|
| 153 |
+
df["x"] = embeddings_2d[:, 0]
|
| 154 |
+
df["y"] = embeddings_2d[:, 1]
|
| 155 |
+
|
| 156 |
+
# Create topic list for each level, levels are created by calculating the distance
|
| 157 |
+
distances = hierarchical_topics.Distance.to_list()
|
| 158 |
+
if level_scale == 'log' or level_scale == 'logarithmic':
|
| 159 |
+
log_indices = np.round(np.logspace(start=math.log(1,10), stop=math.log(len(distances)-1,10), num=nr_levels)).astype(int).tolist()
|
| 160 |
+
log_indices.reverse()
|
| 161 |
+
max_distances = [distances[i] for i in log_indices]
|
| 162 |
+
elif level_scale == 'lin' or level_scale == 'linear':
|
| 163 |
+
max_distances = [distances[indices[-1]] for indices in np.array_split(range(len(hierarchical_topics)), nr_levels)][::-1]
|
| 164 |
+
else:
|
| 165 |
+
raise ValueError("level_scale needs to be one of 'log' or 'linear'")
|
| 166 |
+
|
| 167 |
+
for index, max_distance in enumerate(max_distances):
|
| 168 |
+
|
| 169 |
+
# Get topics below `max_distance`
|
| 170 |
+
mapping = {topic: topic for topic in df.topic.unique()}
|
| 171 |
+
selection = hierarchical_topics.loc[hierarchical_topics.Distance <= max_distance, :]
|
| 172 |
+
selection.Parent_ID = selection.Parent_ID.astype(int)
|
| 173 |
+
selection = selection.sort_values("Parent_ID")
|
| 174 |
+
|
| 175 |
+
for row in selection.iterrows():
|
| 176 |
+
for topic in row[1].Topics:
|
| 177 |
+
mapping[topic] = row[1].Parent_ID
|
| 178 |
+
|
| 179 |
+
# Make sure the mappings are mapped 1:1
|
| 180 |
+
mappings = [True for _ in mapping]
|
| 181 |
+
while any(mappings):
|
| 182 |
+
for i, (key, value) in enumerate(mapping.items()):
|
| 183 |
+
if value in mapping.keys() and key != value:
|
| 184 |
+
mapping[key] = mapping[value]
|
| 185 |
+
else:
|
| 186 |
+
mappings[i] = False
|
| 187 |
+
|
| 188 |
+
# Create new column
|
| 189 |
+
df[f"level_{index+1}"] = df.topic.map(mapping)
|
| 190 |
+
df[f"level_{index+1}"] = df[f"level_{index+1}"].astype(int)
|
| 191 |
+
|
| 192 |
+
# Prepare topic names of original and merged topics
|
| 193 |
+
trace_names = []
|
| 194 |
+
topic_names = {}
|
| 195 |
+
for topic in range(hierarchical_topics.Parent_ID.astype(int).max()):
|
| 196 |
+
if topic < hierarchical_topics.Parent_ID.astype(int).min():
|
| 197 |
+
if topic_model.get_topic(topic):
|
| 198 |
+
if isinstance(custom_labels, str):
|
| 199 |
+
trace_name = f"{topic}_" + "_".join(list(zip(*topic_model.topic_aspects_[custom_labels][topic]))[0][:3])
|
| 200 |
+
elif topic_model.custom_labels_ is not None and custom_labels:
|
| 201 |
+
trace_name = topic_model.custom_labels_[topic + topic_model._outliers]
|
| 202 |
+
else:
|
| 203 |
+
trace_name = f"{topic}_" + "_".join([word[:20] for word, _ in topic_model.get_topic(topic)][:3])
|
| 204 |
+
topic_names[topic] = {"trace_name": trace_name[:40], "plot_text": trace_name[:40]}
|
| 205 |
+
trace_names.append(trace_name)
|
| 206 |
+
else:
|
| 207 |
+
trace_name = f"{topic}_" + hierarchical_topics.loc[hierarchical_topics.Parent_ID == str(topic), "Parent_Name"].values[0]
|
| 208 |
+
plot_text = "_".join([name[:20] for name in trace_name.split("_")[:3]])
|
| 209 |
+
topic_names[topic] = {"trace_name": trace_name[:40], "plot_text": plot_text[:40]}
|
| 210 |
+
trace_names.append(trace_name)
|
| 211 |
+
|
| 212 |
+
# Prepare traces
|
| 213 |
+
all_traces = []
|
| 214 |
+
for level in range(len(max_distances)):
|
| 215 |
+
traces = []
|
| 216 |
+
|
| 217 |
+
# Selected topics
|
| 218 |
+
if topics:
|
| 219 |
+
selection = df.loc[(df.topic.isin(topics)), :]
|
| 220 |
+
unique_topics = sorted([int(topic) for topic in selection[f"level_{level+1}"].unique()])
|
| 221 |
+
else:
|
| 222 |
+
unique_topics = sorted([int(topic) for topic in df[f"level_{level+1}"].unique()])
|
| 223 |
+
|
| 224 |
+
for topic in unique_topics:
|
| 225 |
+
if topic != -1:
|
| 226 |
+
if topics:
|
| 227 |
+
selection = df.loc[(df[f"level_{level+1}"] == topic) &
|
| 228 |
+
(df.topic.isin(topics)), :]
|
| 229 |
+
else:
|
| 230 |
+
selection = df.loc[df[f"level_{level+1}"] == topic, :]
|
| 231 |
+
|
| 232 |
+
if not hide_annotations:
|
| 233 |
+
selection.loc[len(selection), :] = None
|
| 234 |
+
selection["text"] = ""
|
| 235 |
+
selection.loc[len(selection) - 1, "x"] = selection.x.mean()
|
| 236 |
+
selection.loc[len(selection) - 1, "y"] = selection.y.mean()
|
| 237 |
+
selection.loc[len(selection) - 1, "text"] = topic_names[int(topic)]["plot_text"]
|
| 238 |
+
|
| 239 |
+
all_traces.append(traces)
|
| 240 |
+
|
| 241 |
+
# Track and count traces
|
| 242 |
+
nr_traces_per_set = [len(traces) for traces in all_traces]
|
| 243 |
+
trace_indices = [(0, nr_traces_per_set[0])]
|
| 244 |
+
for index, nr_traces in enumerate(nr_traces_per_set[1:]):
|
| 245 |
+
start = trace_indices[index][1]
|
| 246 |
+
end = nr_traces + start
|
| 247 |
+
trace_indices.append((start, end))
|
| 248 |
+
|
| 249 |
+
|
| 250 |
+
return all_traces, selection, df
|
funcs/representation_model.py
CHANGED
|
@@ -129,7 +129,7 @@ def find_model_file(hf_model_name, hf_model_file, search_folder):
|
|
| 129 |
|
| 130 |
print("Downloading model to: ", hf_home_value)
|
| 131 |
|
| 132 |
-
hf_hub_download(repo_id=hf_model_name, filename=
|
| 133 |
|
| 134 |
found_file = find_file(hf_home_value, file_to_find)
|
| 135 |
return found_file
|
|
@@ -141,7 +141,7 @@ def create_representation_model(create_llm_topic_labels, llm_config, hf_model_na
|
|
| 141 |
# Use llama.cpp to load in model
|
| 142 |
|
| 143 |
# This was for testing on systems without a HF_HOME env variable
|
| 144 |
-
os.unsetenv("HF_HOME")
|
| 145 |
|
| 146 |
#if "HF_HOME" in os.environ:
|
| 147 |
# del os.environ["HF_HOME"]
|
|
@@ -168,7 +168,7 @@ def create_representation_model(create_llm_topic_labels, llm_config, hf_model_na
|
|
| 168 |
# All representation models
|
| 169 |
representation_model = {
|
| 170 |
"KeyBERT": keybert,
|
| 171 |
-
"
|
| 172 |
}
|
| 173 |
|
| 174 |
elif create_llm_topic_labels == "No":
|
|
|
|
| 129 |
|
| 130 |
print("Downloading model to: ", hf_home_value)
|
| 131 |
|
| 132 |
+
hf_hub_download(repo_id=hf_model_name, filename=hf_model_file, cache_dir=hf_home_value)
|
| 133 |
|
| 134 |
found_file = find_file(hf_home_value, file_to_find)
|
| 135 |
return found_file
|
|
|
|
| 141 |
# Use llama.cpp to load in model
|
| 142 |
|
| 143 |
# This was for testing on systems without a HF_HOME env variable
|
| 144 |
+
#os.unsetenv("HF_HOME")
|
| 145 |
|
| 146 |
#if "HF_HOME" in os.environ:
|
| 147 |
# del os.environ["HF_HOME"]
|
|
|
|
| 168 |
# All representation models
|
| 169 |
representation_model = {
|
| 170 |
"KeyBERT": keybert,
|
| 171 |
+
"LLM": llm_model
|
| 172 |
}
|
| 173 |
|
| 174 |
elif create_llm_topic_labels == "No":
|