File size: 12,454 Bytes
1b98b3b
b83d741
8b69117
 
 
b83d741
 
f793138
8b69117
b83d741
8b69117
 
 
 
1b98b3b
 
8b69117
 
 
36f3f37
8b69117
 
 
 
 
 
 
 
 
 
 
 
36f3f37
8b69117
 
 
 
 
 
 
 
 
 
 
 
 
1b98b3b
 
b83d741
8b69117
 
 
 
 
 
 
 
 
 
1b98b3b
8b69117
1b98b3b
8b69117
1b98b3b
cfcfd51
8b69117
 
 
 
 
cfcfd51
8b69117
 
 
 
 
cfcfd51
8b69117
 
 
 
 
 
 
 
 
 
cfcfd51
b83d741
8b69117
 
 
 
 
36f3f37
 
cfcfd51
8b69117
 
 
 
cfcfd51
 
8b69117
b83d741
8b69117
 
cfcfd51
8b69117
cfcfd51
8b69117
b83d741
8b69117
cfcfd51
8b69117
 
 
 
 
 
 
 
cfcfd51
8b69117
 
cfcfd51
8b69117
 
 
 
 
f793138
8b69117
f793138
 
8b69117
 
1b98b3b
 
 
 
 
 
 
 
 
8b69117
f793138
 
 
 
8b69117
 
 
 
 
 
 
 
1b98b3b
 
b83d741
 
1b98b3b
8b69117
b83d741
 
 
1b98b3b
8b69117
1b98b3b
 
8b69117
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b98b3b
36f3f37
 
8b69117
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36f3f37
8b69117
36f3f37
 
8b69117
 
 
 
 
bba3f6f
b83d741
8b69117
 
 
 
 
36f3f37
8b69117
 
 
b83d741
8b69117
 
 
 
 
b83d741
36f3f37
1b98b3b
 
 
 
 
 
8b69117
8f86518
36f3f37
b83d741
 
 
1b98b3b
f793138
 
1b98b3b
 
b553066
8b69117
 
 
 
 
 
 
36f3f37
8b69117
 
 
 
 
 
36f3f37
8b69117
 
 
 
36f3f37
b553066
8b69117
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b83d741
b553066
8b69117
 
 
 
 
 
 
b553066
1b98b3b
8b69117
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bba3f6f
b83d741
1b98b3b
8b69117
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
import gradio as gr
from gradio.themes.ocean import Ocean
import torch
import numpy as np
import supervision as sv
from transformers import (
    AutoModelForCausalLM,
    Qwen3VLForConditionalGeneration,
    Qwen3VLProcessor,
)
import json
import ast
import re
from PIL import Image
from spaces import GPU

# --- Constants and Configuration ---
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
DTYPE = "auto"

CATEGORIES = ["Query", "Caption", "Point", "Detect"]
PLACEHOLDERS = {
    "Query": "What's in this image?",
    "Caption": "Enter caption length: short, normal, or long",
    "Point": "Select an object from suggestions or enter manually",
    "Detect": "Select an object from suggestions or enter manually",
}

# --- Model Loading ---
# Load Moondream
moondream = AutoModelForCausalLM.from_pretrained(
    "moondream/moondream3-preview",
    trust_remote_code=True,
    dtype=DTYPE,
    device_map=DEVICE,
    revision="main",
).eval()

# Load Qwen3-VL
qwen_model = Qwen3VLForConditionalGeneration.from_pretrained(
    "Qwen/Qwen3-VL-4B-Instruct",
    dtype=DTYPE,
    device_map=DEVICE,
).eval()
qwen_processor = Qwen3VLProcessor.from_pretrained(
    "Qwen/Qwen3-VL-4B-Instruct",
)


# --- Utility Functions ---
def safe_parse_json(text: str):
    text = text.strip()
    text = re.sub(r"^```(json)?", "", text)
    text = re.sub(r"```$", "", text)
    text = text.strip()
    try:
        return json.loads(text)
    except json.JSONDecodeError:
        pass
    try:
        return ast.literal_eval(text)
    except Exception:
        return {}


@GPU
def get_suggested_objects(image: Image.Image):
    """Get suggested objects in the image using Moondream"""
    if image is None:
        return []

    try:
        result = moondream.query(
            image=image,
            question="What objects are in the image, provide the list.",
            reasoning=False,
        )
        suggested_objects = ast.literal_eval(result["answer"])
        if isinstance(suggested_objects, list):
            if len(suggested_objects) > 3:  # send not more than 3 suggestions
                return suggested_objects[:3]
            else:
                suggested_objects
        return []
    except Exception as e:
        print(f"Error getting suggestions: {e}")
        return []


def annotate_image(image: Image.Image, result: dict):
    if not isinstance(image, Image.Image):
        return image  # Return original if not a valid image
    if not isinstance(result, dict):
        return image  # Return original if result is not a dict

    original_width, original_height = image.size

    # Handle Point annotations
    if "points" in result and result["points"]:
        points_list = []
        for point in result.get("points", []):
            x = int(point["x"] * original_width)
            y = int(point["y"] * original_height)
            points_list.append([x, y])

        if not points_list:
            return image

        points_array = np.array(points_list).reshape(1, -1, 2)
        key_points = sv.KeyPoints(xy=points_array)
        vertex_annotator = sv.VertexAnnotator(radius=8, color=sv.Color.RED)
        annotated_image = vertex_annotator.annotate(
            scene=image.copy(), key_points=key_points
        )
        return annotated_image

    # Handle Detection annotations
    if "objects" in result and result["objects"]:
        detections = sv.Detections.from_vlm(
            sv.VLM.MOONDREAM,
            result,
            resolution_wh=image.size,
        )
        if len(detections) == 0:
            return image

        box_annotator = sv.BoxAnnotator(color_lookup=sv.ColorLookup.INDEX, thickness=5)
        annotated_scene = box_annotator.annotate(
            scene=image.copy(), detections=detections
        )
        return annotated_scene

    return image


# --- Inference Functions ---
def run_qwen_inference(image: Image.Image, prompt: str):
    messages = [
        {
            "role": "user",
            "content": [
                {"type": "image", "image": image},
                {"type": "text", "text": prompt},
            ],
        }
    ]
    inputs = qwen_processor.apply_chat_template(
        messages,
        tokenize=True,
        add_generation_prompt=True,
        return_dict=True,
        return_tensors="pt",
    ).to(DEVICE)

    with torch.inference_mode():
        generated_ids = qwen_model.generate(
            **inputs,
            max_new_tokens=512,
        )

    generated_ids_trimmed = [
        out_ids[len(in_ids) :]
        for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
    ]
    output_text = qwen_processor.batch_decode(
        generated_ids_trimmed,
        skip_special_tokens=True,
        clean_up_tokenization_spaces=False,
    )[0]
    return output_text


@GPU
def process_qwen(image: Image.Image, category: str, prompt: str):
    if category == "Query":
        return run_qwen_inference(image, prompt), {}
    elif category == "Caption":
        full_prompt = f"Provide a {prompt} length caption for the image."
        return run_qwen_inference(image, full_prompt), {}
    elif category == "Point":
        full_prompt = (
            f"Provide 2d point coordinates for {prompt}. Report in JSON format."
        )
        output_text = run_qwen_inference(image, full_prompt)
        parsed_json = safe_parse_json(output_text)
        points_result = {"points": []}
        if isinstance(parsed_json, list):
            for item in parsed_json:
                if "point_2d" in item and len(item["point_2d"]) == 2:
                    x, y = item["point_2d"]
                    points_result["points"].append({"x": x / 1000.0, "y": y / 1000.0})
        return json.dumps(points_result, indent=2), points_result
    elif category == "Detect":
        full_prompt = (
            f"Provide bounding box coordinates for {prompt}. Report in JSON format."
        )
        output_text = run_qwen_inference(image, full_prompt)
        parsed_json = safe_parse_json(output_text)
        objects_result = {"objects": []}
        if isinstance(parsed_json, list):
            for item in parsed_json:
                if "bbox_2d" in item and len(item["bbox_2d"]) == 4:
                    xmin, ymin, xmax, ymax = item["bbox_2d"]
                    objects_result["objects"].append(
                        {
                            "x_min": xmin / 1000.0,
                            "y_min": ymin / 1000.0,
                            "x_max": xmax / 1000.0,
                            "y_max": ymax / 1000.0,
                        }
                    )
        return json.dumps(objects_result, indent=2), objects_result
    return "Invalid category", {}


@GPU
def process_moondream(image: Image.Image, category: str, prompt: str):
    if category == "Query":
        result = moondream.query(image=image, question=prompt)
        return result["answer"], {}
    elif category == "Caption":
        result = moondream.caption(image, length=prompt)
        return result["caption"], {}
    elif category == "Point":
        result = moondream.point(image, prompt)
        return json.dumps(result, indent=2), result
    elif category == "Detect":
        result = moondream.detect(image, prompt)
        return json.dumps(result, indent=2), result
    return "Invalid category", {}


# --- Gradio Interface Logic ---
def on_category_and_image_change(image, category):
    """Generate suggestions when category changes to Point or Detect"""
    text_box = gr.Textbox(value="", placeholder=PLACEHOLDERS.get(category, ""), interactive=True)

    if image is None or category not in ["Point", "Detect", "Caption"]:
        return gr.Radio(choices=[], visible=False), text_box

    if category == "Caption":
        return gr.Radio(choices=["short", "normal", "long"], visible=True), text_box

    suggestions = get_suggested_objects(image)
    if suggestions:
        return gr.Radio(choices=suggestions, visible=True, interactive=True), text_box
    else:
        return gr.Radio(choices=["no choice possible"], visible=True, interactive=True), text_box


def update_prompt_from_radio(selected_object):
    """Update prompt textbox when a radio option is selected"""
    if selected_object:
        return gr.Textbox(value=selected_object)
    return gr.Textbox(value="")


def process_inputs(image, category, prompt):
    if image is None:
        raise gr.Error("Please upload an image.")
    if not prompt:
        raise gr.Error("Please provide a prompt.")

    # Process with Qwen
    qwen_text, qwen_data = process_qwen(image, category, prompt)
    qwen_annotated_image = annotate_image(image, qwen_data)

    # Process with Moondream
    moondream_text, moondream_data = process_moondream(image, category, prompt)
    moondream_annotated_image = annotate_image(image, moondream_data)

    return qwen_annotated_image, qwen_text, moondream_annotated_image, moondream_text


css_hide_share = """
button#gradio-share-link-button-0 {
    display: none !important;
}
"""

# --- Gradio UI Layout ---
with gr.Blocks(theme=Ocean(), css=css_hide_share) as demo:
    gr.Markdown("# 👓 Object Understanding with Vision Language Models")
    gr.Markdown(
        "### Explore object detection, visual grounding, keypoint detection, and/or object counting through natural language prompts."
    )
    gr.Markdown("""
    *Powered by [Qwen3-VL 4B](https://huggingface.co/Qwen/Qwen3-VL-4B-Instruct) and [Moondream 3 Preview](https://huggingface.co/moondream/moondream3-preview). Inspired by the tutorial [Object Detection and Visual Grounding with Qwen 2.5](https://pyimagesearch.com/2025/06/09/object-detection-and-visual-grounding-with-qwen-2-5/) on PyImageSearch.*
    *Moondream 3 uses the [moondream-preview](https://huggingface.co/vikhyatk/moondream2/blob/main/moondream.py), selecting `detect` for categories with "Object Detection" `point` for the ones with "Keypoint Detection", and reasoning-based querying for all others.*
    """)

    with gr.Row():
        with gr.Column(scale=1):
            image_input = gr.Image(type="pil", label="Input Image")
            category_select = gr.Radio(
                choices=CATEGORIES,
                value=CATEGORIES[0],
                label="Select Task Category",
                interactive=True,
            )
            # Suggested objects radio (hidden by default)
            suggestions_radio = gr.Radio(
                choices=[],
                label="Suggestions",
                visible=False,
                interactive=True,
            )
            prompt_input = gr.Textbox(
                placeholder=PLACEHOLDERS[CATEGORIES[0]],
                label="Prompt",
                lines=2,
            )

            submit_btn = gr.Button("Compare Models", variant="primary")

        with gr.Column(scale=2):
            with gr.Row():
                with gr.Column():
                    gr.Markdown("### Qwen/Qwen3-VL-4B-Instruct")
                    qwen_img_output = gr.Image(label="Annotated Image")
                    qwen_text_output = gr.Textbox(
                        label="Text Output", lines=8, interactive=False
                    )
                with gr.Column():
                    gr.Markdown("### moondream/moondream3-preview")
                    moon_img_output = gr.Image(label="Annotated Image")
                    moon_text_output = gr.Textbox(
                        label="Text Output", lines=8, interactive=False
                    )

    gr.Examples(
        examples=[
            ["examples/example_1.jpg", "Query", "How many cars are in the image?"],
            ["examples/example_1.jpg", "Caption", ""],
            ["examples/example_2.JPG", "Point", ""],
            ["examples/example_2.JPG", "Detect", ""],
        ],
        inputs=[image_input, category_select, prompt_input],
    )

    # --- Event Listeners ---
    category_select.change(
        fn=on_category_and_image_change,
        inputs=[image_input, category_select],
        outputs=[suggestions_radio, prompt_input],
    )

    suggestions_radio.change(
        fn=update_prompt_from_radio,
        inputs=[suggestions_radio],
        outputs=[prompt_input],
    )

    submit_btn.click(
        fn=process_inputs,
        inputs=[image_input, category_select, prompt_input],
        outputs=[qwen_img_output, qwen_text_output, moon_img_output, moon_text_output],
    )

if __name__ == "__main__":
    demo.launch()