Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -204,21 +204,24 @@ def predict_stock_price(ticker, num_days):
|
|
| 204 |
"""
|
| 205 |
Main prediction function for Gradio interface
|
| 206 |
"""
|
|
|
|
|
|
|
|
|
|
| 207 |
if not ticker:
|
| 208 |
-
return None, "Please enter a stock ticker symbol"
|
| 209 |
|
| 210 |
# Convert ticker to uppercase
|
| 211 |
ticker = ticker.upper()
|
| 212 |
|
| 213 |
# Validate number of days
|
| 214 |
if num_days < 1 or num_days > 90:
|
| 215 |
-
return None, "Please enter a number of days between 1 and 90"
|
| 216 |
|
| 217 |
# Get predictions
|
| 218 |
historical_data, predictions_df, error = predictor.predict_next_days(ticker, num_days)
|
| 219 |
|
| 220 |
if error:
|
| 221 |
-
return None, error
|
| 222 |
|
| 223 |
# Create plot
|
| 224 |
fig = predictor.create_plot(historical_data, predictions_df, ticker)
|
|
@@ -257,6 +260,78 @@ def predict_stock_price(ticker, num_days):
|
|
| 257 |
|
| 258 |
return fig, summary, predictions_display
|
| 259 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 260 |
# Create Gradio interface
|
| 261 |
with gr.Blocks(title="Stock Price Forecaster", theme=gr.themes.Soft()) as app:
|
| 262 |
gr.Markdown(
|
|
@@ -277,7 +352,7 @@ with gr.Blocks(title="Stock Price Forecaster", theme=gr.themes.Soft()) as app:
|
|
| 277 |
with gr.Column(scale=1):
|
| 278 |
ticker_input = gr.Textbox(
|
| 279 |
label="Stock Ticker Symbol",
|
| 280 |
-
placeholder="
|
| 281 |
value="AAPL"
|
| 282 |
)
|
| 283 |
|
|
@@ -291,15 +366,7 @@ with gr.Blocks(title="Stock Price Forecaster", theme=gr.themes.Soft()) as app:
|
|
| 291 |
|
| 292 |
predict_button = gr.Button("🚀 Generate Forecast", variant="primary")
|
| 293 |
|
| 294 |
-
|
| 295 |
-
"""
|
| 296 |
-
### Popular Tickers:
|
| 297 |
-
- **Tech**: AAPL, GOOGL, MSFT, AMZN, TSLA
|
| 298 |
-
- **Finance**: JPM, BAC, V, MA
|
| 299 |
-
- **Healthcare**: JNJ, UNH, PFE
|
| 300 |
-
- **Energy**: XOM, CVX
|
| 301 |
-
"""
|
| 302 |
-
)
|
| 303 |
|
| 304 |
with gr.Row():
|
| 305 |
with gr.Column(scale=2):
|
|
@@ -315,23 +382,20 @@ with gr.Blocks(title="Stock Price Forecaster", theme=gr.themes.Soft()) as app:
|
|
| 315 |
datatype=["str", "number", "number", "number"]
|
| 316 |
)
|
| 317 |
|
| 318 |
-
# Add examples
|
| 319 |
gr.Examples(
|
| 320 |
examples=[
|
| 321 |
["AAPL", 7],
|
| 322 |
-
["GOOGL", 14],
|
| 323 |
-
["TSLA", 5],
|
| 324 |
-
["MSFT", 10]
|
| 325 |
],
|
| 326 |
inputs=[ticker_input, days_input],
|
| 327 |
outputs=[plot_output, summary_output, predictions_table],
|
| 328 |
-
fn=
|
| 329 |
cache_examples=False
|
| 330 |
)
|
| 331 |
|
| 332 |
-
# Connect the prediction function
|
| 333 |
predict_button.click(
|
| 334 |
-
fn=
|
| 335 |
inputs=[ticker_input, days_input],
|
| 336 |
outputs=[plot_output, summary_output, predictions_table]
|
| 337 |
)
|
|
@@ -343,6 +407,9 @@ with gr.Blocks(title="Stock Price Forecaster", theme=gr.themes.Soft()) as app:
|
|
| 343 |
- **ARIMA**: Auto-Regressive Integrated Moving Average model trained on historical price data
|
| 344 |
- **LSTM**: Long Short-Term Memory neural network with 3 layers and dropout regularization
|
| 345 |
- **Training Data**: Historical stock prices from Yahoo Finance
|
|
|
|
|
|
|
|
|
|
| 346 |
"""
|
| 347 |
)
|
| 348 |
|
|
|
|
| 204 |
"""
|
| 205 |
Main prediction function for Gradio interface
|
| 206 |
"""
|
| 207 |
+
# Create empty dataframe for error cases
|
| 208 |
+
empty_df = pd.DataFrame()
|
| 209 |
+
|
| 210 |
if not ticker:
|
| 211 |
+
return None, "Please enter a stock ticker symbol", empty_df
|
| 212 |
|
| 213 |
# Convert ticker to uppercase
|
| 214 |
ticker = ticker.upper()
|
| 215 |
|
| 216 |
# Validate number of days
|
| 217 |
if num_days < 1 or num_days > 90:
|
| 218 |
+
return None, "Please enter a number of days between 1 and 90", empty_df
|
| 219 |
|
| 220 |
# Get predictions
|
| 221 |
historical_data, predictions_df, error = predictor.predict_next_days(ticker, num_days)
|
| 222 |
|
| 223 |
if error:
|
| 224 |
+
return None, error, empty_df
|
| 225 |
|
| 226 |
# Create plot
|
| 227 |
fig = predictor.create_plot(historical_data, predictions_df, ticker)
|
|
|
|
| 260 |
|
| 261 |
return fig, summary, predictions_display
|
| 262 |
|
| 263 |
+
# Create demo mode for when models aren't available
|
| 264 |
+
def create_demo_predictions(ticker, num_days):
|
| 265 |
+
"""
|
| 266 |
+
Create demo predictions when models aren't loaded
|
| 267 |
+
"""
|
| 268 |
+
# Create fake historical data
|
| 269 |
+
dates = pd.date_range(end=datetime.now(), periods=100, freq='D')
|
| 270 |
+
base_price = 150.0
|
| 271 |
+
historical_data = pd.DataFrame({
|
| 272 |
+
'price': base_price + np.cumsum(np.random.randn(100) * 2)
|
| 273 |
+
}, index=dates)
|
| 274 |
+
|
| 275 |
+
# Create fake predictions
|
| 276 |
+
future_dates = pd.date_range(start=dates[-1] + timedelta(days=1),
|
| 277 |
+
periods=num_days, freq='D')
|
| 278 |
+
|
| 279 |
+
last_price = historical_data['price'].iloc[-1]
|
| 280 |
+
arima_pred = last_price + np.cumsum(np.random.randn(num_days) * 1.5)
|
| 281 |
+
lstm_pred = last_price + np.cumsum(np.random.randn(num_days) * 1.5)
|
| 282 |
+
|
| 283 |
+
predictions_df = pd.DataFrame({
|
| 284 |
+
'Date': future_dates,
|
| 285 |
+
'ARIMA_Prediction': arima_pred,
|
| 286 |
+
'LSTM_Prediction': lstm_pred,
|
| 287 |
+
'Average_Prediction': (arima_pred + lstm_pred) / 2
|
| 288 |
+
})
|
| 289 |
+
|
| 290 |
+
return historical_data, predictions_df
|
| 291 |
+
|
| 292 |
+
# Modified predict function with fallback to demo mode
|
| 293 |
+
def predict_stock_price_safe(ticker, num_days):
|
| 294 |
+
"""
|
| 295 |
+
Safe prediction function with demo fallback
|
| 296 |
+
"""
|
| 297 |
+
empty_df = pd.DataFrame()
|
| 298 |
+
|
| 299 |
+
if not ticker:
|
| 300 |
+
return None, "Please enter a stock ticker symbol", empty_df
|
| 301 |
+
|
| 302 |
+
ticker = ticker.upper()
|
| 303 |
+
|
| 304 |
+
if num_days < 1 or num_days > 90:
|
| 305 |
+
return None, "Please enter a number of days between 1 and 90", empty_df
|
| 306 |
+
|
| 307 |
+
# Check if models are loaded
|
| 308 |
+
if not all([predictor.arima_model, predictor.lstm_model, predictor.scaler]):
|
| 309 |
+
# Use demo mode
|
| 310 |
+
demo_msg = f"""
|
| 311 |
+
### ⚠️ Demo Mode Active
|
| 312 |
+
|
| 313 |
+
**Note**: Pre-trained models are not available. Showing demo predictions with random data.
|
| 314 |
+
|
| 315 |
+
To use real predictions, ensure you have:
|
| 316 |
+
1. `arima_model.pkl` - ARIMA model file
|
| 317 |
+
2. `lstm_model.h5` - LSTM model file
|
| 318 |
+
3. `scaler.pkl` - Data scaler file
|
| 319 |
+
|
| 320 |
+
Place these files in the same directory as the app.
|
| 321 |
+
"""
|
| 322 |
+
|
| 323 |
+
historical_data, predictions_df = create_demo_predictions(ticker, num_days)
|
| 324 |
+
fig = predictor.create_plot(historical_data, predictions_df, f"{ticker} (DEMO)")
|
| 325 |
+
|
| 326 |
+
predictions_display = predictions_df.copy()
|
| 327 |
+
predictions_display['Date'] = predictions_display['Date'].dt.strftime('%Y-%m-%d')
|
| 328 |
+
predictions_display = predictions_display.round(2)
|
| 329 |
+
|
| 330 |
+
return fig, demo_msg, predictions_display
|
| 331 |
+
|
| 332 |
+
# Normal prediction flow
|
| 333 |
+
return predict_stock_price(ticker, num_days)
|
| 334 |
+
|
| 335 |
# Create Gradio interface
|
| 336 |
with gr.Blocks(title="Stock Price Forecaster", theme=gr.themes.Soft()) as app:
|
| 337 |
gr.Markdown(
|
|
|
|
| 352 |
with gr.Column(scale=1):
|
| 353 |
ticker_input = gr.Textbox(
|
| 354 |
label="Stock Ticker Symbol",
|
| 355 |
+
placeholder="AAPL",
|
| 356 |
value="AAPL"
|
| 357 |
)
|
| 358 |
|
|
|
|
| 366 |
|
| 367 |
predict_button = gr.Button("🚀 Generate Forecast", variant="primary")
|
| 368 |
|
| 369 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 370 |
|
| 371 |
with gr.Row():
|
| 372 |
with gr.Column(scale=2):
|
|
|
|
| 382 |
datatype=["str", "number", "number", "number"]
|
| 383 |
)
|
| 384 |
|
| 385 |
+
# Add examples (use safe function)
|
| 386 |
gr.Examples(
|
| 387 |
examples=[
|
| 388 |
["AAPL", 7],
|
|
|
|
|
|
|
|
|
|
| 389 |
],
|
| 390 |
inputs=[ticker_input, days_input],
|
| 391 |
outputs=[plot_output, summary_output, predictions_table],
|
| 392 |
+
fn=predict_stock_price_safe,
|
| 393 |
cache_examples=False
|
| 394 |
)
|
| 395 |
|
| 396 |
+
# Connect the safe prediction function
|
| 397 |
predict_button.click(
|
| 398 |
+
fn=predict_stock_price_safe,
|
| 399 |
inputs=[ticker_input, days_input],
|
| 400 |
outputs=[plot_output, summary_output, predictions_table]
|
| 401 |
)
|
|
|
|
| 407 |
- **ARIMA**: Auto-Regressive Integrated Moving Average model trained on historical price data
|
| 408 |
- **LSTM**: Long Short-Term Memory neural network with 3 layers and dropout regularization
|
| 409 |
- **Training Data**: Historical stock prices from Yahoo Finance
|
| 410 |
+
|
| 411 |
+
### ⚠️ Disclaimer
|
| 412 |
+
This is for educational purposes only. Stock predictions are inherently uncertain and should not be used as the sole basis for investment decisions.
|
| 413 |
"""
|
| 414 |
)
|
| 415 |
|